Artmüller Energieberatung GmbH Helmut Artmüller Steinfeldstraße 13 3304 St. Georgen am Ybbsfelde 0676 6192359 helmut@artmueller.org

ENERGIEAUSWEIS

Planung Pflichtschule

ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

13.a Straße 3 3331 Kematen

Energieausweis für Nicht-Wohngebäude

OIB-Richtlinie 6 Ausgabe: März 2015

BEZEICHNUNG ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

Gebäude(-teil) Baujahr 1961

Nutzungsprofil Pflichtschule Letzte Veränderung

Straße13.a Straße 3KatastralgemeindeKematenPLZ/Ort3331 KematenKG-Nr.3336Grundstücksnr.120/1Seehöhe305 m

SPEZIFISCHER STANDORT-REFERENZ-HEIZWÄRMEBEDARF, STANDORT-PRIMÄRENERGIEBEDARF, STANDORT-KOHLENDIOXIDEMISSIONEN UND GESAMTENERGIEEFFIZIENZ-FAKTOR HWB Ref,SK PEB SK CO2 SK F GEE A++ A+ B B C D E F G

HWB Ref: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der **Warmwasserwärmebedarf** ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteitung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

KB: Der **Kühlbedarf** ist jene Wärmemenge, welche aus den Räumen abgeführt werden muss, um unter der Solltemperatur zu bleiben. Er errechnet sich aus den nicht nutzbaren inneren und solaren Gewinnen.

BefEB: Beim **Befeuchtungsenergiebedarf** wird der allfällige Energiebedarf zur Befeuchtung dargestellt.

KEB: Beim **Kühlenergiebedarf** werden zusätzlich zum Kühlbedarf die Verluste des Kühlsystems und der Kältebereitstellung berücksichtigt.

BeIEB: der **Beleuchtungsenergiebedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht dem Energiebedarf zur nutzungsgerechten Beleuchtung.

BSB: Der **Betriebsstrombedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht der Hälfte der mittleren inneren Lasten.

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den jeweils allfälligen Betriebsstrombedarf, Kühlenergiebedarf und Beleuchtungsenergiebedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

feee: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der **Primärenergiebedarf** ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB ern.) und einen nicht erneuerbaren (PEB n.ern.) Anteil auf.

CO2: Gesamte dem Endenergiebedarf zuzurechnende **Kohlendioxidemissionen**, einschließlich jener für Vorketten.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU über die Gesamtenergieeffizienz von Gebäuden nach Maßgabe der NÖ BTV 2014. Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist 2004 - 2008 (Strom: 2009 - 2013), und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Nicht-Wohngebäude

OIB-Richtlinie 6 Ausgabe: März 2015

AED.	 DEI	-	
GEB			

Brutto-Grundfläche	3.506 m ²	charakteristische Länge	2,52 m	mittlerer U-Wert	0,30 W/m ² K
Bezugsfläche	2.805 m ²	Heiztage	198 d	LEK _T -Wert	19,7
Brutto-Volumen	15.137 m³	Heizgradtage	3489 Kd	Art der Lüftung	RLT mit WRG
Gebäude-Hüllfläche	6.003 m ²	Klimaregion	NF	Bauweise	schwer
Kompaktheit (A/V)	0,40 1/m	Norm-Außentemperatur	-14,3 °C	Soll-Innentemperatur	20 °C

ANFORDERUNGEN (Referenzklima)

Referenz-Heizwärmebedarf	71,7 kWh/m²a	erfüllt	HWB _{Ref,RK}	39,0	kWh/m²a
Außeninduzierter Kühlbedarf	2,0 kWh/m³a	erfüllt	KB* _{RK}	0,6	kWh/m³a
End-/Lieferenergiebedarf			E/LEB _{RK}	91,8	kWh/m²a
Gesamtenergieeffizienz-Faktor	1,10	erfüllt	f _{GEE}	0,63	
Erneuerbarer Anteil	mind. 5 % von der fGEE Anforderung	erfüllt			

WÄRME- UND ENERGIEBEDARF (Standortklima)

WARRIE OND ENERGIEDEDART (Grandormina)			
Referenz-Heizwärmebedarf	144.720 kWh/a	HWB _{Ref,SK}	41,3 kWh/m²a
Heizwärmebedarf	111.149 kWh/a	HWB _{SK}	31,7 kWh/m²a
Warmwasserwärmebedarf	16.503 kWh/a	WWWB	4,7 kWh/m²a
Heizenergiebedarf	154.397 kWh/a	HEB _{SK}	44,0 kWh/m²a
Energieaufwandszahl Heizen		e _{AWZ,H}	1,21
Kühlbedarf	89.088 kWh/a	KB _{SK}	25,4 kWh/m²a
Kühlenergiebedarf		KEB _{SK}	
Energieaufwandszahl Kühlen		e _{AWZ,K}	
Befeuchtungsenergiebedarf		BefEB _{SK}	
Beleuchtungsenergiebedarf	86.941 kWh/a	BelEB	24,8 kWh/m²a
Betriebsstrombedarf	86.371 kWh/a	BSB	24,6 kWh/m²a
Endenergiebedarf	327.709 kWh/a	EEB _{SK}	93,5 kWh/m²a
Primärenergiebedarf	571.210 kWh/a	PEB _{SK}	162,9 kWh/m²a
Primärenergiebedarf nicht erneuerbar	440.994 kWh/a	PEB _{n.ern.,SK}	125,8 kWh/m²a
Primärenergiebedarf erneuerbar	130.216 kWh/a	PEB _{ern.,SK}	37,1 kWh/m²a
Kohlendioxidemissionen	92.552 kg/a	CO2 _{SK}	26,4 kg/m²a
Gesamtenergieeffizienz-Faktor		f _{GEE}	0,63
Photovoltaik-Export		$PV_{Export,SK}$	

ERSTELLT

Artmüller Energieberatung GmbH Steinfeldstraße 13 **GWR-Zahl** ErstellerIn Ausstellungsdatum 05.06.2016

3304 St. Georgen am Ybbsfelde

Gültigkeitsdatum Planung Unterschrift

ARTMÜLLER
ENERGIEBERATUNG GmbH
THERMOGRAFIE
BLOWERDOOM NIESSINGEN
3304 SI. Gabt por fin Yobstelde
helmulight rubeller org
work groundleier org
Mobil 46 (156 447 23. 59)
Tell' 40, 1447 7473 476 24

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

Datenblatt GEQ

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf Kematen

HWB_{SK} 32 fgff 0.63

Gebäudedaten - Größere Renovierung - Planung 4

Brutto-Grundfläche BGF charakteristische Länge I_C 2,52 m 3.506 m² Kompaktheit A_B / V_B Konditioniertes Brutto-Volumen 15.137 m³ 0,40 m⁻¹

Gebäudehüllfläche A_B 6.003 m²

Ermittlung der Eingabedaten

Geometrische Daten: Einreichplan, 27.05.2016, Plannr. 009_1(2)-16/EINR

Bauphysikalische Daten: Einreichplan, 27.05.2016 Haustechnik Daten: Angabe Planer, Juni 2016

Ergebnisse Standortklima (Kematen)

Transmissionswärmeverluste Q _T		175.752	kWh/a
Lüftungswärmeverluste Q _V		88.749	kWh/a
Solare Wärmegewinne η x Q s		52.295	kWh/a
Innere Wärmegewinne η x Q i	schwere Bauweise	99.356	kWh/a
Heizwärmebedarf Q _h		111.149	kWh/a

Ergebnisse Referenzklima

Transmissionswärmeverluste Q _T	166.397	kWh/a
Lüftungswärmeverluste Q _V	83.899	kWh/a
Solare Wärmegewinne η x Q s	49.650	kWh/a
Innere Wärmegewinne η x Q i	94.024	kWh/a
Heizwärmebedarf Q _h	104.876	kWh/a

Haustechniksystem

Raumheizung: Nah-/Fernwärme (Fernwärme aus Heizwerk (konventionell))

Kombiniert mit Raumheizung Warmwasser:

Lüftung: 1957,52m² Fensterlüftung; hygienisch erforderlicher Luftwechsel = 0,4; 1548,16m² Lufterneuerung;

energetisch wirksamer Luftwechsel: 0,26; Blower-Door: 9,00; Plattenwärmeübertrager

Kreuz-Gegenstrom 65%; kein Erdwärmetauscher

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6 / Wärmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6 / ON H 5055 / ON H 5056 / ON H 5057 / ON H 5058 / ON H 5059 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / ON EN 12831 / OIB Richtlinie 6

Anmerkung:

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Bauteil Anforderungen

ALT Volksschule Marktgemeinde Kematen nach Sanierung

BAUTE	EILE	R-Wert	R-Wert min	U-Wert	U-Wert max	Erfüllt
EB01	7 Boden Mehrzweckhalle	6,03	3,50	0,15		Ja
EB02	8 Boden Tagesbetreuung	3,95	3,50	0,24		Ja
EB03	9 Boden Werkraum Bodenaufbau Neu	4,38	3,50	0,22		Ja
EB05	6 Boden Neubau	6,77	3,50	0,14		Ja
KD03	Kellerdecke Neubau	4,08	3,50	0,22		Ja

Einheiten: R-Wert [m²K/W], U-Wert [W/m²K]
Quelle U-Wert max, R-Wert min: NÖ BTV 2014

U-Wert berechnet nach ÖNORM EN ISO 6946

Ol3-Klassifizierung - Ökologie der Bauteile ALT Volksschule Marktgemeinde Kematen nach Sanierung

Bauteil	е	Fläche	PEI	GWP	AP	∆ Ol3
		A [m²]	[MJ]	[kg CO2]	[kg SO2]	
AD01	Dachbodendecke Bestand	113,2	52.092,9	2.297,3	19,0	41,1
AD01 AD02	15/16 Decke Turnsaal	332,0	242.180,9	2.297,3 46,4	72,4	53,4
AD02 AD03	Decke zu Dachraum	332,0 6,2	2.853,1	46, 4 125,8	1,0	41,1
AD03 AW01		20,8	17.660,6			
AW01 AW02	Ziegelwand Bestand 20/20 Ziegelwand Bestand 38/20	20,6 515,4	822.054,3	1.120,5 60.859,8	4,4	65,2 121,0
AW02 AW03	2 Betonwand Neubau	27,6	43.743,8	3.440,0	186,1 9,9	121,0
AW03	1 Ziegelwand Neu 25/20	422,8	•	25.911,1		59,4
_			380.621,0	•	60,9	
AW05 AW06	5 Brettsperrholz 10/20	69,6 75,8	62.972,5	-1.790,6	13,7	52,0
	AW Keller Mantelbeton		133.989,4	12.194,1	45,3	165,4
AW07	1 Ziegelwand hinterlüftet 25/20	353,8	234.387,2	18.300,9	37,5	44,8
AW08	3.1 Brettsperrholz 10/20 hinterlüftet	77,2	59.154,6	-3.895,0	14,1	41,6
FD01	21 Flachdach Bestand	200,0	1.893.209	111.351,0	498,5	740,6
FD02	18 Flachdach Massivholz Neubau	171,1	1.514.185	64.986,2	419,2	685,0
FD03	17 Flachdach Beton Neubau	783,1	1.449.348	104.366,3	302,7	135,5
FD04	19/22 Flachdach	80,5	710.541,1	36.110,5	193,4	689,3
FD05	20 Flachdach Lift	11,2	105.751,9	6.238,4	28,6	748,3
EB01	7 Boden Mehrzweckhalle	222,8	314.574,6	10.050,6	73,5	98,6
EB02	8 Boden Tagesbetreuung	261,1	297.511,9	27.117,6	71,7	91,9
EB03	9 Boden Werkraum Bodenaufbau Neu	88,5	86.177,2	7.701,0	20,3	77,5
EB04	erd Boden EG Bestand	84,1	64.251,3	8.022,0	27,4	84,8
EB05	6 Boden Neubau	589,8	853.324,6	70.033,3	187,6	110,4
KD01	Kellerdecke Bestand	146,2	99.203,4	12.301,1	31,9	65,7
KD02	Decke Turnhalle /	109,2	134.306,7	7.011,9	57,3	121,7
	Hackschnitzellager/Kesselraum					
KD03	Kellerdecke Neubau	207,4	284.426,0	26.129,5	67,2	109,9
EW01	erd Wand Stahlbeton Bestand	60,6	103.687,0	10.564,8	36,4	166,1
EW02	erd Wand Höhensprung Bestand	106,7	60.938,9	8.834,6	20,7	58,7
EW03	erd Wand Mantelbeton Bestand	88,3	143.287,0	12.812,4	47,4	149,8
IW01	Wand zu Dachraum	22,9	29.480,1	1.692,3	8,0	102,0
IW02	IW Keller	142,5	62.419,8	7.796,0	20,0	42,4
IW04	IW Keller Neubau	15,2	18.265,7	1.917,9	7,1	123,3
ZD01	13 ZD UG1/UG2	82,9	90.640,9	8.561,8	21,6	88,4
ZD02	ZD Bestand	503,1	341.376,4	42.330,2	109,6	65,7
ZD03	11 Zwischendecke Aufstockung	214,0	158.638,5	-2.017,8	43,5	50,2
ZD04	Zwischendecke Turnhalle / Mehrzweckhalle	222,8	289.977,3	15.085,0	119,5	126,2
ZD05	Zwischendecke Neubau	12,2	14.304,4	1.300,7	3,3	93,2
ZD07	12/13 Zwischendecke Neubau	750,5	1.009.158	93.612,7	240,1	108,3
ZD08	14 ZD Lift	11,2	11.959,8	1.134,9	2,9	86,6
FE/TÜ	Fenster und Türen	598,0	850.696,1	45.568,3	241,6	114,7

Ol3-Klassifizierung - Ökologie der Bauteile

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Ökoindikator PEI OI PEI Punkte 100,00 GWP (Global Warming Potential) [kg CO2/m² KOF] 110,20 Ökoindikator GWP OI GWP Punkte 80,10 AP (Versäuerung) [kg SO2/m² KOF] 0,43	<u> </u>	_			
Ökoindikator PEI OI PEI Punkte 100,00 GWP (Global Warming Potential) [kg CO2/m² KOF] 110,20 Ökoindikator GWP OI GWP Punkte 80,10 AP (Versäuerung) [kg SO2/m² KOF] 0,43	Summe	13.043.353	859.224	3.365	
GWP (Global Warming Potential) [kg CO2/m² KOF] 110,20 Ökoindikator GWP OI GWP Punkte 80,10 AP (Versäuerung) [kg SO2/m² KOF] 0,43	`	It nicht erneuerba	, .	-	,
Ökoindikator GWP OI GWP Punkte 80,10 AP (Versäuerung) [kg SO2/m² KOF] 0,43		Potential)			,
` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	`	. Otomialy		_	
	` ` · · · · · · · · · · · · · · · · ·			•	,
	Ol3-lc (Ökoindikator) Ol3-lc = (PEI + GWP + A	AP) / (2+Ic)			59,44

OI3-Berechnungsleitfaden Version 1.7, 2006

Schichtbezeichnung Ol3-Bezeichnung	Dichte [kg/m³]	im Bauteil
Holzschalung Nutzholz (475kg/m³ -Fi/Ta) rauh, techn. getro.	500	AD02, ZD03
Armierungsstahl	7.800	AD02
CLIMATIZER PLUS	54	AD01, IW01, AD02, AD03
Kiesbetonstein Beton Sulfathüttenzement ohne Bewehrung 2200 kg/m³	2.030	AW01
2.306.18 Hochlochziegelmauer 38 cm Hochlochziegel 17-38cm Normalmauerm. 1150 kg/m³	1.150	AW02, IW01
Synthesa Capatect Dalmatiner Fassadendämmplatte	18	AW02, AW01
KlebeSpachtel Baumit KlebeSpachtel	1.400	AW02, AW04, AW01, AW08, AW05, AW07
Minera Carbon Synthesa Capatect Minera Carbon	1.550	AW03
MK-Strukturputze Synthesa Capatect MK-Strukturputze	1.400	AW03
SH-Reibputz Plus Synthesa Pergit Reibputz Plus	1.700	AW02, AW04, AW01, AW05
Brettsperrholz (475 kg/m³)	475	AW08, AW05
Dalmatiner Fassadendämmplatte Synthesa Capatect Dalmatiner Fassadendämmplatte	18	AW04, AW05
POROTHERM 25-38 N+F	864	AW04, AW07
Inst-Ebene Nutzholz (475kg/m³ -Fi/Ta) gehobelt, techn. getro.	475	AW08
Luft steh., W-Fluss horizontal 35 < d <= 40 mm	1	AW08
ISOVER FASSADENDÄMMPLATTE LEICHT	21	AW08, AW07
Winddichtung ISOCELL OMEGA Winddichtung	300	AW08, AW07
Polyethylenbahn nicht mehr in aktuellem Baubook vorhanden	980	EB01
Blindboden nicht mehr in aktuellem Baubook vorhanden	600	EB01
Doppelschwingträger nicht mehr in aktuellem Baubook vorhanden	450	EB01
Luft steh., W-Fluss n. unten 56 < d <= 60 mm	1	EB01
Federpads EPDM Baufolie, Gummi	1.200	EB01
Luft steh., W-Fluss n. unten 6 < d <= 10 mm	1	EB01

Auffütterungsklotz nicht mehr in aktuellem Baubook vorhanden	450	EB01
EPS-W 20 (19.5 kg/m³)	20	EB01, ZD01, ZD05, EB05, KD03, ZD07, ZD08
steinothan 107 (80mm) steinothan 107 / FD PUR-Dämmplatte >= 80ab 01.0	32	EB02, EB03
AUSTROTHERM XPS TOP 30 80 - 120 mm = 0,036 W/(mK AUSTROTHERM XPS TOP 30 SF	30	EB01, EB05
AUSTROTHERM XPS TOP 30 AUSTROTHERM XPS TOP 30 SF	30	EW01, EW03, AW06, AW03, IW04
Kiesbetonstein nicht mehr in aktuellem Baubook vorhanden	2.030	EW02
Heraklith MMB 3,5 Heraklith-BM	380	EW03, AW06, IW04
EPS-W 20 (19.5 kg/m³) im Mittel EPS-W 20 (19.5 kg/m³)	20	FD01, FD02, FD03, FD04, FD05
EPDM Baufolie, Gummi	1.200	FD01, FD02, FD03, FD04, FD05
Vlies PP	300	FD01, FD02, FD03, FD04, FD05
Schüttungen aus Sand, Kies, Splitt (1800 kg/m³)	1.800	FD01, FD02, FD03, FD04, FD05
Gipskartonplatte (900 kg/m³)	900	FD02, ZD04, FD03, AW08, ZD07, FD04, AW05
Luft steh., W-Fluss n. oben d > 200 mm	1	FD02, FD03
Leimbinder nicht mehr in aktuellem Baubook vorhanden	500	FD02
Luft steh., W-Fluss n. oben d > 200 mm	1	FD02, FD03
Konterlattung nicht mehr in aktuellem Baubook vorhanden	500	FD04
Luft steh., W-Fluss n. oben 21 < d <= 25 mm	1	FD04
Holzriegel nicht mehr in aktuellem Baubook vorhanden	500	FD04
Luft steh., W-Fluss n. oben 196 < d <= 200 mm	1	FD04
Dampfsperre Aluminium Dampfsperre	2.800	FD01, FD02, FD03, FD04, FD05
Quaderstockziegel aus Schlacke, Bims, Beton mit Hüttenbims-Zuschlag (1700 kg/m³)	1.700	IW02
PZ Kalk-Zementputz nicht mehr in aktuellem Baubook vorhanden	1.800	FD01, AD01, AW02, IW01, ZD02, KD01, AW06, IW02, AW01, AD03,
Baumit MPI 26	1.250	AW04, EW01, EW02, EW03, IW04, AW07
Bodenbelag nicht mehr in aktuellem Baubook vorhanden	2.300	ZD02, KD01, EB04

Massivdecke 30/5 Beton mit Hüttenbims-Zuschlag (1700 kg/m³)	1.700	ZD02, KD01
Luft steh., W-Fluss n. unten 21 < d < = 25 mm Luft steh., W-Fluss n. unten 21 < d <= 25 mm	1	ZD04, KD02
Gummigranulatmatte	640	ZD04, KD02
Auffütterungsklotz nicht mehr in aktuellem Baubook vorhanden	500	ZD04, KD02
Mineralwolle ISOVER Wärmedämmfilz	15	ZD04, KD02
Stahlbeton nicht mehr in aktuellem Baubook vorhanden	2.400	EW01, EB01, ZD01, EB02, EB03, ZD05, ZD04, EW03, AW06, KD02, EB04, EB05, ED03, KD03, AW03
EPS-T 1000 (17 kg/m³)	17	ZD01, ZD05, EB05, KD03, ZD07, ZD08
1.202.06 Estrichbeton nicht mehr in aktuellem Baubook vorhanden	2.000	ZD02, KD01, EB04
Dämmung swisspor EPS-F	15	ZD02, KD01, EB04
Sandausgleich nicht mehr in aktuellem Baubook vorhanden	1.800	ZD02, KD01, EB04
Harreither Klimaboden FERMACELL Gipsfaser-Platte	1.150	ZD03
SterlingOSB/3-Zero	600	FD02, AW08, ZD03, FD04, FD05
Riegel Nutzholz (475kg/m³ -Fi/Ta) gehobelt, techn. getro.	475	ZD03
"Dämmung" ISOVER RIO	20	ZD03
Luft steh., W-Fluss horizontal d > 200 mm	1	ZD03, ZD07
Trägerdecke Bims 20+4 Beton mit Hüttenbims-Zuschlag (1700 kg/m³)	1.500	FD01, AD01, AD03, ZD03
Parkett nicht mehr in aktuellem Baubook vorhanden	600	ZD04, KD02
Blindboden nicht mehr in aktuellem Baubook vorhanden	500	ZD04, KD02
Polypropylen nicht mehr in aktuellem Baubook vorhanden	910	ZD04, KD02
Doppelschwingträger nicht mehr in aktuellem Baubook vorhanden	500	ZD04, KD02
Luft steh., W-Fluss n. unten $d < = 6 \text{ mm}$ Luft steh., W-Fluss n. unten $d < = 6 \text{ mm}$	1	ZD04, KD02
C-Profil Armierungsstahl	7.800	ZD04
Luft steh., W-Fluss horizontal 140 < d <= 145 mm	1	ZD04
Luft steh., W-Fluss horizontal d > 200 mm	1	ZD03, ZD07

Baumit Estriche	2.000	ZD01, EB02, EB03, ZD05, EB05, KD03, ZD07, ZD08
Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m³	135	ZD01, EB02, EB03, ZD05, EB05, KD03, ZD07, ZD08
Luft (1 kg/m³)	1	ZW01

Heizlast Abschätzung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Abschätzung der Gebäude-Heizlast auf Basis der **Energieausweis-Berechnung**

Berechnungsblatt

Planer / Baufirma / Hausverwaltung

Marktgemeinde Kematen an der Ybbs

1. Straße 31

Bauherr

A-3331 Kematen an der Ybbs

Tel.: 07448 2312 Tel.:

Norm-Außentemperatur: -14,3 °C Standort: Kematen Berechnungs-Raumtemperatur: 20 °C Brutto-Rauminhalt der

Temperatur-Differenz: 34,3 K beheizten Gebäudeteile: 15.137,27 m³

Gebäudehüllfläche: 6.003,28 m²

Bauteile	Fläche	Wärmed koeffizient	Korr faktor	Korr faktor	Leitwert
	Α	U	f	ffh	
	[m²]	[W/m² K]	[1]	[1]	[W/K]
AD01 Dachbodendecke Bestand	113,18	0,093	0,90		9,50
AD02 15/16 Decke Turnsaal	331,98	0,124	0,90		36,92
AD03 Decke zu Dachraum	6,22	0,093	0,90		0,52
AW01 Ziegelwand Bestand 20/20	20,83	0,156	1,00		3,24
AW02 Ziegelwand Bestand 38/20	515,36	0,131	1,00		67,42
AW03 2 Betonwand Neubau	27,59	0,181	1,00		4,98
AW04 1 Ziegelwand Neu 25/20	422,79	0,138	1,00		58,42
AW05 5 Brettsperrholz 10/20	69,60	0,139	1,00		9,67
AW06 AW Keller Mantelbeton	75,81	0,160	1,00		12,15
AW07 1 Ziegelwand hinterlüftet 25/20	353,84	0,140	1,00		49,55
AW08 3.1 Brettsperrholz 10/20 hinterlüftet	77,17	0,136	1,00		10,51
FD01 21 Flachdach Bestand	200,02	0,091	1,00		18,22
FD02 18 Flachdach Massivholz Neubau	171,08	0,092	1,00		15,76
FD03 17 Flachdach Beton Neubau	783,10	0,091	1,00		71,26
FD04 19/22 Flachdach	80,49	0,087	1,00		7,03
FD05 20 Flachdach Lift	11,18	0,091	1,00		1,02
FE/TÜ Fenster u. Türen	598,01	0,894			534,76
EB01 7 Boden Mehrzweckhalle	222,82	0,152	0,50	1,44	24,26
EB02 8 Boden Tagesbetreuung	261,05	0,239	0,50	1,44	44,89
EB03 9 Boden Werkraum Bodenaufbau Neu	88,47	0,217	0,50	1,44	13,79
EB04 erd Boden EG Bestand	84,05	0,730	0,70		42,96
EB05 6 Boden Neubau	589,80	0,143	0,50	1,44	60,56
KD01 Kellerdecke Bestand	146,18	0,545	0,70		55,74
KD02 Decke Turnhalle / Hackschnitzellager/Kesselraum	109,16	0,538	0,70		41,09
KD03 Kellerdecke Neubau	207,36	0,224	0,70	1,44	46,64
EW01 erd Wand Stahlbeton Bestand	60,63	0,180	0,60		6,53
EW02 erd Wand Höhensprung Bestand	106,65	2,449	0,80		208,96
EW03 erd Wand Mantelbeton Bestand	88,27	0,162	0,80		11,43
IW01 Wand zu Dachraum	22,89	0,084	0,90		1,73
IW02 IW Keller	142,53	1,482	0,70		147,89
IW04 IW Keller Neubau	15,20	0,424	0,70		4,51
Summe OBEN-Bauteile	1.708,88				

Heizlast Abschätzung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Summe UNTEN-Bauteile	1.708,88		
Summe Außenwandflächen	1.818,53		
Summe Innenwandflächen	180,62		
Fensteranteil in Außenwänden 24,2 %	580,09		
Fenster in Innenwänden	6,29		
Fenster in Deckenflächen	11,64		
Summe		[W/K]	1.622
Wärmebrücken (vereinfacht)		[W/K]	162
Transmissions - Leitwert L _T		[W/K]	1.784,09
Lüftungs - Leitwert L _V		[W/K]	2.975,06
Gebäude-Heizlast Abschätzung	Luftwechsel = 1,20 1/h	[kW]	163,2
Flächenbez. Heizlast Abschätzung (3.	506 m ²) [W	/m² BGF]	46,56

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die exakte Dimensionierung ist eine Heizlast-Berechnung nach ÖNORM H 7500 erforderlich.

Projekt:	ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016	Blatt-Nr.:	1
Auftraggeber	Marktgemeinde Kematen an der Ybbs	Bearbeitungsnr.:	

Auftraggeber Marktgemeinde Kematen an der Ybbs			Bearbeitungsnr.:
Bauteilbezeichnung: Kurzbezeichnung: Dachbodendecke Bestand AD01			A
Bauteiltyp: renoviert Decke zu unkonditioniertem ge			
Wärmedurchgangskoeffizient	Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946		
	U - Wert	0,09 [W/m²K]	0000000000000000
			I M 1 : 20

			<u> </u>				
Konstruktionsaufbau und Berechnung							
	Baustoffschichten		d	λ	$R = d / \lambda$		
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]		
1	CLIMATIZER PLUS		0,400	0,039	10,25		
2	Trägerdecke Bims 20+4	В	0,240	0,956	0,251		
3	PZ Kalk-Zementputz	В	0,010	1,000	0,010		
Dic	ke des Bauteils [m]		0,650				
Su	mme der Wärmeübergangswiderstände	R _{si} + R _{se}		0,200	[m²K/W]		
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			₹ _{se}	10,71	[m ² K/W]		
Wä	Wärmedurchgangskoeffizient U = 1 / R _T				[W/m ² K]		

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeind nach Sanierung komplett 05.06. Auftraggeber Marktgemeinde Kematen an der	Blatt-Nr.: 2 Bearbeitungsnr.:	
Bauteilbezeichnung: 15/16 Decke Turnsaal	Kurzbezeichnung: AD02	Α
Bauteiltyp: renoviert Decke zu unkonditioniertem geschloss. Dachraum		
Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946		
U - Wert	0,12 [W/m²K]	
		l M 1 : 20

Konstruktionsaufbau und Berechnung									
	Baustoffschi	chten					d	λ	Anteil
	von außen nach	innen					Dicke	Leitfähigkeit	
Nr	Bezeichnung						[m]	[W/mK]	[%]
1	CLIMATIZER	PLUS					0,200	0,039	
2	Armierungsst	ahl dazw.					0,200	50,00	2,0
	CLIMATIZ	ER PLUS						0,039	98,0
3	Dampfbremse	Э				#	0,0006	0,330	
4	Holzschalung					В	0,024	0,120	
Dic	ke des Bauteil	s [m]					0,425		
Zusammengesetzter Bauteil (Berechnung nach ÖNORM EN ISO 6946)									
Aı	rmierungsstahl:	Achsabstand [m]:	0,500	Breite [m]:	0,010			R _{si} + R	se = 0,200

5,7227

#... diese Schicht zählt nicht zur OI3-Berechnung

Oberer Grenzwert: $R_{To} = 10,464$ Unterer Grenzwert: $R_{Tu} =$ Wärmedurchgangskoeffizient $U = 1/R_T$

 $R_T = 8,0935 \text{ [m}^2\text{K/W]}$

0,12 [W/m²K]

Projekt:	ALT Volksschule Marktgemeinde Kematen	Blatt-Nr.:	3
	nach Sanierung komplett 05.06.2016		
Auftraggeber	Marktgemeinde Kematen an der Ybbs	Bearbeitungsnr.:	
		_	=

Auftraggeber Marktgemeinde Kematen an der Ybbs			Bearbeitungsnr.:
Bauteilbezeichnung: Kurzbezeichnung: Decke zu Dachraum AD03		A	
Bauteiltyp: renoviert Decke zu unkonditioniertem ge	Bauteiltyp: renoviert Decke zu unkonditioniertem geschloss. Dachraum		
Wärmedurchgangskoeffizient	Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946		
	U - Wert	0,09 [W/m²K]	000000000000000000000000000000000000000
			M 1 : 20

			<u> </u>				
Konstruktionsaufbau und Berechnung							
	Baustoffschichten		d	λ	$R = d / \lambda$		
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]		
1	CLIMATIZER PLUS		0,400	0,039	10,25		
2	Trägerdecke Bims 20+4	В	0,240	0,956	0,251		
3	PZ Kalk-Zementputz	В	0,010	1,000	0,010		
Dic	ke des Bauteils [m]		0,650				
Su	mme der Wärmeübergangswiderstände	R _{si} + R _{se}		0,200	[m²K/W]		
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			₹ _{se}	10,71	[m ² K/W]		
Wä	Wärmedurchgangskoeffizient U = 1 / R _T				[W/m ² K]		

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

Auftraggeber Marktgemeinde Kematen an der Ybbs

Bearbeitungsnr.:

Additional Marking Circuit	c itematem an de	1 1003	Boarboitangoin:
Bauteilbezeichnung: Ziegelwand Bestand 20/20		Kurzbezeichnung: AW01	
Bauteiltyp: renoviert Außenwand			A
Wärmedurchgangskoeffizient	berechnet nach ÖNG	ORM EN ISO 6946	
	U - Wert	0,16 [W/m²K]	
			M 1 : 10

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]
1	PZ Kalk-Zementputz	В	0,015	1,000	0,015
2	Kiesbetonstein	В	0,200	1,500	0,133
3	PZ Kalk-Zementputz	В	0,025	1,000	0,025
4	KlebeSpachtel		0,005	0,800	0,006
5	Synthesa Capatect Dalmatiner Fassadendämm	platte	0,200	0,033	6,061
6	KlebeSpachtel		0,005	0,800	0,006
7	SH-Reibputz Plus		0,003	0,910	0,003
Dic	ke des Bauteils [m]		0,453		
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W]					[m ² K/W]
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			₹ _{se}	6,419	[m ² K/W]
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$				[W/m ² K]

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs		Blatt-Nr.: Bearbeitungsnr.:	5	
Bauteilbezeichnung: Ziegelwand Bestand	38/20	Kurzbezeichnung: AW02		
Bauteiltyp: renoviert Außenwand				Α
Wärmedurchgangsk	oeffizient berechnet nach ÖNC	ORM EN ISO 6946		
	U - Wert	0,13 [W/m²K]		
			M 1 ::	20

Konstruktionsaufbau und Berechnung						
	Baustoffschichten	d	λ	$R = d / \lambda$		
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]		
•	PZ Kalk-Zementputz B	0,015	1,000	0,015		
• •	2.306.18 Hochlochziegelmauer 38 cm B	0,380	0,280	1,357		
· ·	PZ Kalk-Zementputz B	0,025	1,000	0,025		
4	KlebeSpachtel	0,005	0,800	0,006		
1,	Synthesa Capatect Dalmatiner Fassadendämmplatte	0,200	0,033	6,061		
	KlebeSpachtel	0,005	0,800	0,006		
7	SH-Reibputz Plus	0,003	0,910	0,003		
Di	cke des Bauteils [m]	0,633		•		
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W]						
W	Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			[m ² K/W]		
W	ärmedurchgangskoeffizient $U = 1 / R_T$		0,13	[W/m ² K]		

Projekt:	ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016	Blatt-Nr.:	6
	Marktgemeinde Kematen an der Ybbs	Bearbeitungsnr.:	

Auftraggeber Marktgemeinde Kematen an der Ybbs			Bearbeitungsnr.:
Bauteilbezeichnung: 2 Betonwand Neubau		Kurzbezeichnung: AW03	
Bauteiltyp: neu Außenwand			I A
Wärmedurchgangskoeffizient	berechnet nach ÖNG	ORM EN ISO 6946	
	U - Wert	0,18 [W/m²K]	
			M 1 : 10

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Stahlbeton		0,250	2,500	0,100	
2	AUSTROTHERM XPS TOP 30		0,200	0,038	5,263	
3	Minera Carbon		0,004	1,000	0,004	
4	MK-Strukturputze		0,002	0,780	0,003	
Dic	ke des Bauteils [m]		0,456			
Summe der Wärmeübergangswiderstände R si + R se 0				0,170	[m²K/W]	
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$		R _{se}	5,540	[m²K/W]	
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$			0,18	[W/m ² K]	

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs		Blatt-Nr.: Bearbeitungsnr.:	7
Bauteilbezeichnung: 1 Ziegelwand Neu 25/20	Kurzbezeichnung: AW04		
Bauteiltyp: neu Außenwand			Α
Wärmedurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946		
U - Wert	0,14 [W/m²K]		
		M 1 :	20

					101 1 . 20		
Konstruktionsaufbau und Berechnung							
	Baustoffschichten		d	λ	$R = d / \lambda$		
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]		
1	Baumit MPI 26		0,015	0,600	0,025		
2	POROTHERM 25-38 N+F		0,250	0,259	0,965		
3	KlebeSpachtel		0,005	0,800	0,006		
4	Dalmatiner Fassadendämmplatte		0,200	0,033	6,061		
5	KlebeSpachtel		0,005	0,800	0,006		
6	SH-Reibputz Plus		0,003	0,910	0,003		
Dic	ke des Bauteils [m]		0,478				
Sur	Summe der Wärmeübergangswiderstände R _{si} + R _{se}			0,170	[m ² K/W]		
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$			7,236	[m²K/W]		
Wä	Wärmedurchgangskoeffizient U = 1 / R _T				[W/m²K]		

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs		Blatt-Nr.: Bearbeitungsnr.:	8		
Bauteilbezei 5 Brettsper	Ü		Kurzbezeichnung: AW05		
Bauteiltyp: r					Α
Wärmedurd	hgangskoeffizient	berechnet nach ÖNG	ORM EN ISO 6946		
		U - Wert	0,14 [W/m²K]		
				M 1 :	10

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Gipskartonplatte (900 kg/m³)		0,015	0,250	0,060	
2	Gipskartonplatte (900 kg/m³)		0,015	0,250	0,060	
3	Brettsperrholz (475 kg/m³)		0,100	0,120	0,833	
4	KlebeSpachtel		0,005	0,800	0,006	
5	Dalmatiner Fassadendämmplatte		0,200	0,033	6,061	
6	KlebeSpachtel		0,005	0,800	0,006	
7	SH-Reibputz Plus		0,003	0,910	0,003	
Dic	ke des Bauteils [m]		0,343			
Su	Summe der Wärmeübergangswiderstände $R_{si} + R_{se}$ 0,170 [m ² K/W]					
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$			R _{se}	7,199	[m ² K/W]	
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$				[W/m ² K]	

Projekt: ALT Volksschule nach Sanierung Auftraggeber Marktgemeinde I	komplett 05.06.	.2016	Blatt-Nr.: Bearbeitungsnr.:	9
Bauteilbezeichnung: AW Keller Mantelbeton		Kurzbezeichnung: AW06	72	
Bauteiltyp: renoviert Außenwand				A
Wärmedurchgangskoeffizient be	erechnet nach ÖNC	ORM EN ISO 6946		
	U - Wert	0,16 [W/m²K]		
			M 1 :	20

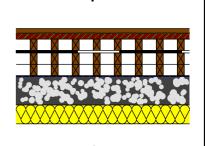
Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	PZ Kalk-Zementputz	В	0,015	1,000	0,015	
2	Heraklith MMB 3,5	В	0,035	0,110	0,318	
3	Stahlbeton	В	0,330	2,500	0,132	
4	Heraklith MMB 3,5	В	0,035	0,110	0,318	
5	PZ Kalk-Zementputz	В	0,025	1,000	0,025	
6	AUSTROTHERM XPS TOP 30		0,200	0,038	5,263	
Dio	ke des Bauteils [m]		0,640			
Su	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W]					
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$		₹ _{se}	6,241	[m²K/W]	
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$			0,16	[W/m ² K]	

Projekt:	ALT Volksschule Marktgemeind	e Kematen	Blatt-Nr.:	10
	nach Sanierung komplett 05.06.			
Auftraggeber	Marktgemeinde Kematen an der	Ybbs	Bearbeitungsnr.:	

Autraggeber Warktgemeinde Kematen an der	פטעו	Dearbeitungsin
Bauteilbezeichnung: 1 Ziegelwand hinterlüftet 25/20		
Bauteiltyp: neu Außenwand hinterlüftet	A	
Wärmedurchgangskoeffizient berechnet nach ÖNC		
U - Wert	0,14 [W/m²K]	
		M 1 : 10

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Baumit MPI 26		0,015	0,600	0,025	
2	POROTHERM 25-38 N+F		0,250	0,259	0,965	
3	KlebeSpachtel		0,005	0,800	0,006	
4	ISOVER FASSADENDÄMMPLATTE LEICHT		0,200	0,034	5,882	
5	Winddichtung		0,0006	0,220	0,003	
Dic	ke des Bauteils [m]		0,471			
Sui	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,260 [m²K/W]					
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$ 7,141 [m ² K/W]					
Wä	rmedurchgangskoeffizient		0,14	[W/m ² K]		

Projekt: ALT Volksschule Marktgemeind nach Sanierung komplett 05.06.2 Auftraggeber Marktgemeinde Kematen an der	2016	Blatt-Nr.: Bearbeitungsnr.:	11
Bauteilbezeichnung: 3.1 Brettsperrholz 10/20 hinterlüftet	Kurzbezeichnung: AW08		
Bauteiltyp: neu Außenwand			Α
Wärmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946		
U - Wert	0,14 [W/m ² K]		


				M 1 : 10		
Konstruktionsaufbau und Berechnung						
	Baustoffschichten	d	λ	Anteil		
	von innen nach außen	Dicke	Leitfähigkeit			
Nr	Bezeichnung	[m]	[W/mK]	[%]		
1	Gipskartonplatte (900 kg/m³)	0,015	0,250			
2	Gipskartonplatte (900 kg/m³)	0,015	0,250			
3	SterlingOSB/3-Zero	0,018	0,130			
4	Inst-Ebene dazw.	0,040	0,120	10,0		
	Luft steh., W-Fluss horizontal 35 < d <= 40 mm		0,222	90,0		
5	Brettsperrholz (475 kg/m³)	0,100	0,120			
6	KlebeSpachtel	0,005	0,800			
7	ISOVER FASSADENDÄMMPLATTE LEICHT	0,200	0,034			
8	Winddichtung	0,0006	0,220			
Dic	ke des Bauteils [m]	0,394				
Zus	sammengesetzter Bauteil	(Berechnun	g nach ÖNORM	EN ISO 6946)		
In	st-Ebene: Achsabstand [m]: 0,500 Breite [m]: 0,050		R _{si} + R	se = 0,170		
Ob	erer Grenzwert: R _{To} = 7,3483 Unterer Grenzwert: R _{Tu} =	7,3420	$R_T = 7,345$	52 [m²K/W]		
Wä	rmedurchgangskoeffizient $U = 1 / R_T$		0,14	[W/m ² K]		

ALT Volksschule Marktgemeinde Kematen nach Sanierung

ALT Volksschule Marktgemeinde Kematen Projekt: Blatt-Nr.: 12 nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs Bearbeitungsnr.: Bauteilbezeichnung: Kurzbezeichnung: 7 Boden Mehrzweckhalle **EB01** Bauteiltyp: neu erdanliegender Fußboden (>1,5m unter Erdreich)

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert **0,15** [W/m²K]

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	Anteil
	von innen nach außen		Dicke	Leitfähigkeit	
٧r	Bezeichnung		[m]	[W/mK]	[%]
1	Parkettboden	#	0,021	0,130	
2	Polyethylenbahn		0,001	0,500	
3	Blindboden		0,030	0,130	
4	Doppelschwingträger dazw.		0,060	0,120	10,0
	Luft steh., W-Fluss n. unten 56 < d <= 60 mm			0,273	90,0
5	Federpads dazw.	F	0,013	0,170	10,0
	Luft steh., W-Fluss n. unten 6 < d <= 10 mm	F		0,063	90,0
6	Auffütterungsklotz dazw.		0,060	0,120	10,0
	EPS-W 20 (19.5 kg/m³)			0,038	90,0
7	Auffütterungsklotz dazw.		0,060	0,120	10,0
	EPS-W 20 (19.5 kg/m³)			0,038	90,0
8	Polymerbitumen-Dichtungsbahn	#	0,005	0,230	
9	Stahlbeton		0,150	2,500	
10	AUSTROTHERM XPS TOP 30 80 - 120 mm = 0,036		0,100	0,036	
Dic	ke des Bauteils [m]		0,500		
Zus	sammengesetzter Bauteil		(Berechnun	g nach ÖNORM	EN ISO 6946)

Oberer Grenzwert: R _{To} = 6,7703	Unterer Grenzwert: R _{Tu} = 6,4304	$R_T = 6,6004 \text{ [m}^2\text{K/W]}$
Wärmedurchgangskoeffizient	U = 1 / R _T	0,15 [W/m ² K]

- #... diese Schicht zählt nicht zur OI3-Berechnung
- F... diese Schicht enthält eine Flächenheizung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

Auftraggeber Marktgemeinde Kematen an der Ybbs

Blatt-Nr.: 13

Bearbeitungsnr.:

Auftraggeber Marktgemeinde Kematen an der Ybbs

Bauteilbezeichnung:
8 Boden Tagesbetreuung

Bauteiltyp: renoviert
erdanliegender Fußboden (>1,5m unter Erdreich)

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert

0,24 [W/m²K]

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Bodenbelag	#	0,005	1,000	0,005	
2	Baumit Estriche F		0,070	1,400	0,050	
3	steinothan 107 (80mm)		0,080	0,022	3,636	
4	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m³		0,014	0,060	0,233	
5	Polymerbitumen-Dichtungsbahn	#	0,001	0,230	0,004	
6	Stahlbeton		0,200	2,500	0,080	
Dic	ke des Bauteils [m]		0,370			
Su	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W					
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$				4,178	[m²K/W]	
Wä	rmedurchgangskoeffizient U = 1 / R _T			0,24	[W/m²K]	

- #... diese Schicht zählt nicht zur Ol3-Berechnung
- F... diese Schicht enthält eine Flächenheizung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

ALT Volksschule Marktgemeinde Kematen Projekt: Blatt-Nr.: 14

nach Sanierun Auftraggeber Marktgemeind	g Komplett 05.06 e Kematen an de		Bearbeitungsnr.:
Bauteilbezeichnung: Kurzbezeichnung: 9 Boden Werkraum Bodenaufbau Neu EB03			
Bauteiltyp: neu erdanliegender Fußboden (>1,	5m unter Erdreich)		
Wärmedurchgangskoeffizient	Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946		
	U - Wert	0,22 [W/m²K]	A M 1 : 10

Konstruktionsaufbau und Berechnung					
	Baustoffschichten	d	λ	$R = d / \lambda$	
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]	
1	Bodenbelag #	0,005	1,000	0,005	
2	Baumit Estriche F	0,070	1,400	0,050	
3	steinothan 107 (80mm)	0,080	0,022	3,636	
4	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m³	0,040	0,060	0,667	
5	Polymerbitumen-Dichtungsbahn #	0,005	0,230	0,022	
6	Stahlbeton	0,150	2,500	0,060	
Dic	ke des Bauteils [m]	0,350			
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W]					
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$				[m²K/W]	
Wä	irmedurchgangskoeffizient $U = 1 / R_T$		0,22	[W/m²K]	

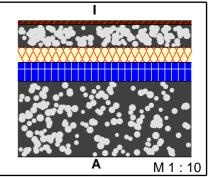
- #... diese Schicht zählt nicht zur OI3-Berechnung
- F... diese Schicht enthält eine Flächenheizung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

Auftraggeber Marktgemeinde Kematen an der Ybbs

Blatt-Nr.: 15


Bearbeitungsnr.:

Bauteilbezeichnung: Kurzbezeichnung: erd Boden EG Bestand EB04

Bauteiltyp: bestehend erdanliegender Fußboden (<=1,5m unter Erdreich)

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert 0,73 [W/m²K]

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Bodenbelag	В	0,010	1,300	0,008	
2	1.202.06 Estrichbeton	В	0,060	1,480	0,041	
3	Dämmung	В	0,040	0,040	1,000	
4	Sandausgleich	В	0,050	0,700	0,071	
5	Stahlbeton	В	0,200	2,500	0,080	
Dic	ke des Bauteils [m]		0,360			
Sur	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W]					
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_t$			1,370	[m²K/W]	
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$			0,73	[W/m ² K]	

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemein nach Sanierung komplett 05.06 Auftraggeber Marktgemeinde Kematen an de	Blatt-Nr.: 16 Bearbeitungsnr.:	
Bauteilbezeichnung: 6 Boden Neubau	Kurzbezeichnung: EB05	
Bauteiltyp: neu erdanliegender Fußboden (>1,5m unter Erdreich)		
Wärmedurchgangskoeffizient berechnet nach ÖN	ORM EN ISO 6946 0,14 [W/m²K]	

Konstruktionsaufbau und Berechnung					
	Baustoffschichten	d	λ	$R = d / \lambda$	
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]	
1	Bodenbelag #	0,005	1,000	0,005	
2	Baumit Estriche F	0,070	1,400	0,050	
3	EPS-T 1000 (17 kg/m³)	0,030	0,038	0,789	
4	EPS-W 20 (19.5 kg/m³)	0,080	0,038	2,105	
5	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m³	0,060	0,060	1,000	
6	Polymerbitumen-Dichtungsbahn #	0,005	0,230	0,022	
7	Stahlbeton	0,200	2,500	0,080	
8	AUSTROTHERM XPS TOP 30 80 - 120 mm = 0,036	0,100	0,036	2,778	
Dic	ke des Bauteils [m]	0,550			
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W]					
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$		R _{se}	6,999	[m ² K/W]	
Wä	rmedurchgangskoeffizient U = 1 / R _T		0,14	[W/m ² K]	

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

F... diese Schicht enthält eine Flächenheizung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeind nach Sanierung komplett 05.06.2 Auftraggeber Marktgemeinde Kematen an der	2016	Blatt-Nr.: Bearbeitungsnr.:	17
Bauteilbezeichnung: erd Wand Stahlbeton Bestand	Kurzbezeichnung: EW01		
Bauteiltyp: renoviert erdanliegende Wand (>1,5m unter Erdreich)			Α
Wärmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946		
U - Wert	0,18 [W/m²K]		

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Baumit MPI 26	В	0,010	0,600	0,017
2	Stahlbeton	В	0,400	2,500	0,160
3	AUSTROTHERM XPS TOP 30		0,200	0,038	5,263
Dic	ke des Bauteils [m]		0,610		
Su	Summe der Wärmeübergangswiderstände R si + R se			0,130	[m²K/W]
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$		5,570	[m²K/W]	
Wärmedurchgangskoeffizient $U = 1 / R_T$			0,18	[W/m ² K]	

ALT Volksschule Marktgemeinde Kematen nach Sanierung

nach Sanierung komplett 05.06.2016		Blatt-Nr.: Bearbeitungsnr.:	18
Bauteilbezeichnung: erd Wand Höhensprung Bestand	Kurzbezeichnung: EW02		
Bauteiltyp: bestehend erdanliegende Wand (<=1,5m unter Erdreich)			Α
Wärmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946		
U - Wert	2.45 [W/m²K]		

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Baumit MPI 26	В	0,015	0,600	0,025
2	Kiesbetonstein	В	0,380	1,500	0,253
Dic	ke des Bauteils [m]		0,395		
Sui	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,130	[m²K/W]
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$		0,408	[m²K/W]		
Wärmedurchgangskoeffizient $U = 1 / R_T$		2,45	[W/m ² K]		

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeind nach Sanierung komplett 05.06.2 Auftraggeber Marktgemeinde Kematen an der	2016	Blatt-Nr.: Bearbeitungsnr.:	19
Bauteilbezeichnung: erd Wand Mantelbeton Bestand	Kurzbezeichnung: EW03		
Bauteiltyp: renoviert erdanliegende Wand (<=1,5m unter Erdreich)			Α
Wärmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946		
U - Wert	0,16 [W/m²K]		

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Baumit MPI 26	В	0,010	0,600	0,017
2	Heraklith MMB 3,5	В	0,035	0,110	0,318
3	Stahlbeton	В	0,330	2,500	0,132
4	Heraklith MMB 3,5	В	0,035	0,110	0,318
5	AUSTROTHERM XPS TOP 30		0,200	0,038	5,263
Dic	ke des Bauteils [m]		0,610		
Sui	Summe der Wärmeübergangswiderstände R si + R se			0,130	[m²K/W]
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$		6,178	[m²K/W]		
Wärmedurchgangskoeffizient $U = 1 / R_T$		0,16	[W/m ² K]		

	Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016		Blatt-Nr	`.:	20
Auf	Auftraggeber Marktgemeinde Kematen an der Ybbs		Bearbeitungsnr.:		
Bauteilbezeichnung: Kurzbezeichnung: PD01		ng: A			
Bauteiltyp: renoviert Außendecke, Wärmestrom nach oben					
Wä	rmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946			
	U - Wert	0,09 [W/m ² K]	0.0	0000000	00000
				I	M 1 : 30
Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
NI.	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³)	*	0,060	0,700	0,086
2	Vlies PP		0,005	0,220	0,023
3	EPDM Baufolie, Gummi		0,005	0,170	0,029
4	EPS-W 20 (19.5 kg/m³) im Mittel		0,400	0,038	10,52
5	Dampfsperre		0,005	221,0	
6	Trägerdecke Bims 20+4	В	0,240	0,956	0,251
7	PZ Kalk-Zementputz	В	0,010	1,000	0,010
wäi	metechnisch relevante Dicke des Bauteils [m]		0,665		
Dic	ke des Bauteils [m]		0,725		
Sur	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,140 [m²K/V				[m²K/W]
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			10,97	[m²K/W]	
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$			0,09	[W/m ² K]

^{*...} diese Schicht zählt nicht zur Berechnung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

Auftraggeber Marktgemeinde Kematen an der Ybbs

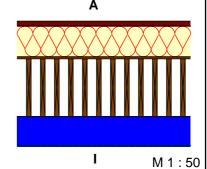
Bauteilbezeichnung:

18 Flachdach Massivholz Neubau

Bauteiltyp: neu

Blatt-Nr.:

Bearbeitungsnr.:


A

FD02

Außendecke, Wärmestrom nach oben

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert 0,09 [W/m²K]

Konstruktionsaufbau und Berechnung						
E	Baustoffschichten	d	λ	Anteil		
	von außen nach innen	Dicke	Leitfähigkeit			
Nr E	Bezeichnung	[m]	[W/mK]	[%]		
1 3	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) #	* 0,060	0,700			
2 ۱	Vlies PP #	* 0,005	0,220			
3 1	EPDM Baufolie, Gummi #	* 0,005	0,170			
4	EPS-W 20 (19.5 kg/m³) im Mittel	0,400	0,038			
5 [Dampfsperre	0,005	221,0			
6 3	SterlingOSB/3-Zero	0,025	0,130			
7 l	Leimbinder dazw.	* 0,760	0,120	16,0		
	Luft steh., W-Fluss n. oben d > 200 mm	*	2,200	84,0		
8 I	Luft steh., W-Fluss n. oben d > 200 mm	* 0,385	2,360			
9 (Gipskartonplatte (900 kg/m³)	* 0,015	0,250			
wärr	metechnisch relevante Dicke des Bauteils [m]	0,430				
Dick	e des Bauteils [m]	1,660				
	Zusammengesetzter Bauteil Leimbinder: Achsabstand [m]: 0,500 Breite [m]: 0,080 (Berechnung nach ÖNORM EN ISO 6946) R _{si} + R _{se} = 0,140					
	Oberer Grenzwert: $R_{To} = 10,858$ Unterer Grenzwert: $R_{Tu} = 10,858$ $R_{T} = 10,858$ [m²K/W] Wärmedurchgangskoeffizient $U = 1/R_{T}$ 0,09 [W/m²K]					

^{*...} diese Schicht zählt nicht zur Berechnung

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

Projekt: ALT Volksschule Marktgemeine nach Sanierung komplett 05.06 Auftraggeber Marktgemeinde Kematen an de	.2016	Blatt-Nr.: 22 Bearbeitungsnr.:
Bauteilbezeichnung: 17 Flachdach Beton Neubau	Kurzbezeichnung: FD03	A
Bauteiltyp: neu Außendecke, Wärmestrom nach oben		
Wärmedurchgangskoeffizient berechnet nach ÖNG	ORM EN ISO 6946	and a party of the second
U - Wert	0,09 [W/m²K]	
		I M 1 : 40

Konstruktionsaufbau und Berechnung					
	Baustoffschichten	d		λ	$R = d / \lambda$
	von außen nach innen	Dicke	Leitfä	higkeit	Durchlaßw.
Nr	Bezeichnung	[m]	[W/	/mK]	[m²K/W]
1	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) #	* 0,06	60 (0,700	0,086
2	Vlies PP #	* 0,00)5	0,220	0,023
3	EPDM Baufolie, Gummi #	* 0,00)5	0,170	0,029
4	EPS-W 20 (19.5 kg/m³) im Mittel	0,40	00	0,038	10,52
5	Dampfsperre #	* 0,00)5	221,0	
6	Stahlbeton	0,25	50 :	2,500	0,100
7	Luft steh., W-Fluss n. oben d > 200 mm	0,38	35 2	2,360	0,163
8	Gipskartonplatte (900 kg/m³)	0,0	5	0,250	0,060
wä	metechnisch relevante Dicke des Bauteils [m]	1,05	50		
Dic	ke des Bauteils [m]	1,12	25		
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,140 [m²K/W]					
Wä	rmedurchgangswiderstand $R_T = R_{si} + \sum R_t$	R _{se}		10,98	[m²K/W]
Wä	rmedurchgangskoeffizient $U = 1/R_T$			0,09	[W/m ² K]

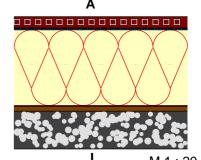
^{*...} diese Schicht zählt nicht zur Berechnung

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

Projekt: ALT Volksschungen Sanierun Auftraggeber Marktgemeinde	Blatt-Nr.: 23 Bearbeitungsnr.:		
Bauteilbezeichnung: 19/22 Flachdach		Kurzbezeichnung: FD04	Α
Bauteiltyp: neu Außendecke, Wärmestrom nac			
Wärmedurchgangskoeffizient	berechnet nach ÖNC	RM EN ISO 6946	
	U - Wert	0,09 [W/m²K]	
			I M 1 : 30

								101 1 . 50	
Konstruktionsaufbau und Berechnung									
Baustoffsch	ichten					d	λ	Anteil	
von außen nach innen					Dicke	Leitfähigkeit			
Bezeichnung					[m]	[W/mK]	[%]		
1 Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) # *					0,060	0,700			
2 Vlies PP # *					# *	0,005	0,220		
3 EPDM Baufolie, Gummi # *					0,005	0,170			
4 EPS-W 20 (19.5 kg/m³) im Mittel					0,400	0,038			
5 Dampfsperre					0,005	221,0			
6 SterlingOSB/3-Zero					0,025	0,130			
7 Holzriegel dazw.					0,200	0,120	20,0		
Luft steh., W-Fluss n. oben 196 < d <= 200 mm						1,250	80,0		
8 Konterlattung dazw.					0,024	0,120	16,0		
Luft steh., W-Fluss n. oben 21 < d <= 25 mm								84,0	
9 Gipskartonplatte (900 kg/m³)							0,250		
10 Gipskartonplatte (900 kg/m³)							0,250		
wärmetechnisch relevante Dicke des Bauteils [m]						0,684			
Dicke des Bauteils [m]					0,754				
Zusammengesetzter Bauteil (Berechnung nach ÖNORM EN ISO 6946)									
onterlattung:	Achsabstand [m]:	0,500	Breite [m]:	0,080			R _{si} + R	se= 0,140	
	Achsabstand [m]:	0,500	Breite [m]:	0,100					
10 ' 10				11,324			14 [m²K/W]		
Wärmedurchgangskoeffizient $U = 1/R_T$						0,09	[W/m²K]		
	Baustoffsch von außen nach Bezeichnung Schüttungen Vlies PP EPDM Baufo EPS-W 20 (1 Dampfsperre SterlingOSB/ Holzriegel da Luft steh., Konterlattung Luft steh., Gipskartonpla rmetechnisch ke des Bautei sammengese onterlattung: olzriegel: erer Grenzwe	Baustoffschichten von außen nach innen Bezeichnung Schüttungen aus Sand, Kies, Sp Vlies PP EPDM Baufolie, Gummi EPS-W 20 (19.5 kg/m³) im Mitte Dampfsperre SterlingOSB/3-Zero Holzriegel dazw. Luft steh., W-Fluss n. oben Konterlattung dazw. Luft steh., W-Fluss n. oben Gipskartonplatte (900 kg/m³) Gipskartonplatte (900 kg/m³) rmetechnisch relevante Dicke de ke des Bauteils [m] sammengesetzter Bauteil onterlattung: Achsabstand [m]: olzriegel: Achsabstand [m]: erer Grenzwert: R To = 11,563	Baustoffschichten von außen nach innen Bezeichnung Schüttungen aus Sand, Kies, Splitt (180 Vlies PP EPDM Baufolie, Gummi EPS-W 20 (19.5 kg/m³) im Mittel Dampfsperre SterlingOSB/3-Zero Holzriegel dazw. Luft steh., W-Fluss n. oben 196 < d Konterlattung dazw. Luft steh., W-Fluss n. oben 21 < d < Gipskartonplatte (900 kg/m³) Gipskartonplatte (900 kg/m³) rmetechnisch relevante Dicke des Bauteike des Bauteils [m] sammengesetzter Bauteil onterlattung: Achsabstand [m]: 0,500 olzriegel: Achsabstand [m]: 0,500 erer Grenzwert: R To = 11,563 Untere	Baustoffschichten von außen nach innen Bezeichnung Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) Vlies PP EPDM Baufolie, Gummi EPS-W 20 (19.5 kg/m³) im Mittel Dampfsperre SterlingOSB/3-Zero Holzriegel dazw. Luft steh., W-Fluss n. oben 196 < d <= 200 mm Konterlattung dazw. Luft steh., W-Fluss n. oben 21 < d <= 25 mm Gipskartonplatte (900 kg/m³) Gipskartonplatte (900 kg/m³) rmetechnisch relevante Dicke des Bauteils [m] see des Bauteils [m] sammengesetzter Bauteil onterlattung: Achsabstand [m]: 0,500 Breite [m]: olzriegel: Achsabstand [m]: 0,500 Breite [m]: erer Grenzwert: R To = 11,563 Unterer Grenzwert	Baustoffschichten von außen nach innen Bezeichnung Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) Vlies PP EPDM Baufolie, Gummi EPS-W 20 (19.5 kg/m³) im Mittel Dampfsperre SterlingOSB/3-Zero Holzriegel dazw. Luft steh., W-Fluss n. oben 196 < d <= 200 mm Konterlattung dazw. Luft steh., W-Fluss n. oben 21 < d <= 25 mm Gipskartonplatte (900 kg/m³) Gipskartonplatte (900 kg/m³) rmetechnisch relevante Dicke des Bauteils [m] ske des Bauteils [m] sammengesetzter Bauteil onterlattung: Achsabstand [m]: 0,500 Breite [m]: 0,080 olzriegel: Achsabstand [m]: 0,500 Breite [m]: 0,100 erer Grenzwert: R To = 11,563 Unterer Grenzwert: R Tu =	Baustoffschichten von außen nach innen Bezeichnung Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) # * Vlies PP #* EPDM Baufolie, Gummi # * EPS-W 20 (19.5 kg/m³) im Mittel Dampfsperre SterlingOSB/3-Zero Holzriegel dazw. Luft steh., W-Fluss n. oben 196 < d <= 200 mm Konterlattung dazw. Luft steh., W-Fluss n. oben 21 < d <= 25 mm Gipskartonplatte (900 kg/m³) Gipskartonplatte (900 kg/m³) rmetechnisch relevante Dicke des Bauteils [m] semmengesetzter Bauteil onterlattung: Achsabstand [m]: 0,500 Breite [m]: 0,080 olzriegel: Achsabstand [m]: 0,500 Breite [m]: 0,100 erer Grenzwert: R To = 11,563 Unterer Grenzwert: R Tu = 11,324	Baustoffschichten	Saustoffschichten Dicke Leitfähigkeit [W/mK] Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) # * 0,060 0,700 Vlies PP # * 0,005 0,220 EPDM Baufolie, Gummi # * 0,005 0,170 EPS-W 20 (19.5 kg/m³) im Mittel 0,400 0,038 Dampfsperre 0,005 221,0 SterlingOSB/3-Zero 0,025 0,130 Holzriegel dazw. 0,200 0,120 Luft steh., W-Fluss n. oben 196 < d <= 200 mm 1,250 Konterlattung dazw. 0,024 0,120 Luft steh., W-Fluss n. oben 21 < d <= 25 mm 0,167 Gipskartonplatte (900 kg/m³) 0,015 0,250 Gipskartonplatte (900 kg/m³) 0,015 0,2	

^{*...} diese Schicht zählt nicht zur Berechnung


^{#...} diese Schicht zählt nicht zur OI3-Berechnung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

ALT Volksschule Marktgemeinde Kematen Projekt: Blatt-Nr.: 24 nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs Bearbeitungsnr.: Bauteilbezeichnung: Kurzbezeichnung: 20 Flachdach Lift FD05 Bauteiltyp: neu Außendecke, Wärmestrom nach oben

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert **0,09** [W/m²K]

Konstruktionsaufbau und Berechnung						
	Baustoffschichten	d	λ	$R = d / \lambda$		
	von außen nach innen	Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]		
1	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) # *	0,060	0,700	0,086		
2	Vlies PP # *	0,005	0,220	0,023		
3	EPDM Baufolie, Gummi # *	0,005	0,170	0,029		
4	EPS-W 20 (19.5 kg/m³) im Mittel	0,400	0,038	10,52		
5	Dampfsperre	0,005	221,0			
6	SterlingOSB/3-Zero	0,025	0,130	0,192		
7	Stahlbeton	0,200	2,500	0,080		
wä	metechnisch relevante Dicke des Bauteils [m]	0,630				
Dic	ke des Bauteils [m]	0,700				
Sur	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,140 [m²K/W					
Wä	rmedurchgangswiderstand $R_T = R_{si} + \sum R_t + 1$	₹ _{se}	10,93	[m²K/W]		
Wä	rmedurchgangskoeffizient $U = 1/R_T$		0,09	[W/m²K]		

^{*...} diese Schicht zählt nicht zur Berechnung

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

Projekt:	ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016	Blatt-Nr.:	25
Auftraggeber	Marktgemeinde Kematen an der Ybbs	Bearbeitungsnr.:	

Auftraggeber Marktgemeind	Bear	rbeitungsnr.:		
Bauteilbezeichnung: Wand zu Dachraum				
Bauteiltyp: renoviert Wand zu unkonditioniertem ge	aum	ı	A	
Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946				
	U - Wert	0,08 [W/m²K]		
		M 1 : 20		

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	PZ Kalk-Zementputz	В	0,015	1,000	0,015	
2	2.306.18 Hochlochziegelmauer 38 cm	В	0,380	0,280	1,357	
3	PZ Kalk-Zementputz	В	0,015	1,000	0,015	
4	CLIMATIZER PLUS		0,400	0,039	10,25	
Dic	ke des Bauteils [m]		0,810			
Sui	Summe der Wärmeübergangswiderstände R si + R se			0,260	[m²K/W]	
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_t$		₹se	11,89	[m²K/W]	
Wärmedurchgangskoeffizient U = 1 / R _T				0,08	[W/m ² K]	

Projekt: ALT Volksschule Mark nach Sanierung komp Auftraggeber Marktgemeinde Kema		Blatt-Nr.: 2 Bearbeitungsnr.:	6	
Bauteilbezeichnung: IW Keller	Kurzbe IW02	zeichnung:		
Bauteiltyp: bestehend Wand zu unkonditioniertem ungedämm	ı		A	
Wärmedurchgangskoeffizient berechn	ISO 6946			
U	- Wert 1,48	[W/m²K]		
			M 1 : 1	0

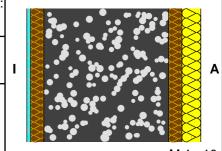
				M 1 : 10			
Konstruktionsaufbau und Berechnung							
	Baustoffschichten		d	λ	$R = d / \lambda$		
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]		
1	PZ Kalk-Zementputz	В	0,015	1,000	0,015		
2	Quaderstockziegel aus Schlacke, Bims,	В	0,250	0,650	0,385		
3	PZ Kalk-Zementputz	В	0,015	1,000	0,015		
Dic	ke des Bauteils [m]		0,280				
Summe der Wärmeübergangswiderstände R _{si} + R _{se}				0,260	[m²K/W]		
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$			₹ _{se}	0,675	[m²K/W]		
Wärmedurchgangskoeffizient $U = 1 / R_T$				1,48	[W/m ² K]		

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

Auftraggeber Marktgemeinde Kematen an der Ybbs

Blatt-Nr.: 27


Bearbeitungsnr.:

Bauteilbezeichnung:
IW Keller Neubau

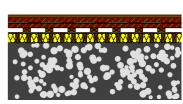
Bauteiltyp: renoviert
Wand zu unkonditioniertem ungedämmten Keller

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert 0,42 [W/m²K]

M 1:10

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]	
1	Baumit MPI 26	В	0,010	0,600	0,017	
2	Heraklith MMB 3,5	В	0,035	0,110	0,318	
3	Stahlbeton	В	0,330	2,500	0,132	
4	Heraklith MMB 3,5	В	0,035	0,110	0,318	
5	AUSTROTHERM XPS TOP 30		0,050	0,038	1,316	
Dic	ke des Bauteils [m]		0,460		•	
Summe der Wärmeübergangswiderstände R si + R se				0,260	[m²K/W]	
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			₹ _{se}	2,361	[m ² K/W]	
Wärmedurchgangskoeffizient $U = 1 / R_T$				0,42	[W/m²K]	


Projekt: ALT Volksschule Marktgemeind nach Sanierung komplett 05.06. Auftraggeber Marktgemeinde Kematen an der	Blatt-Nr.: 2 Bearbeitungsnr.:			
Bauteilbezeichnung: Kellerdecke Bestand	Kurzbezeichnung: KD01			
Bauteiltyp: bestehend Decke zu unkonditioniertem ungedämmten Keller				
Wärmedurchgangskoeffizient berechnet nach ÖNO U - Wert	RM EN ISO 6946 0,54 [W/m²K]			
		A M1:2		
Konstruktionsaufbau und Berechnung				

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]	
1	Bodenbelag	В	0,010	1,300	0,008	
2	1.202.06 Estrichbeton	В	0,060	1,480	0,041	
3	Dämmung	В	0,040	0,040	1,000	
4	Sandausgleich	В	0,050	0,700	0,071	
5	Massivdecke 30/5	В	0,350	0,956	0,366	
6	PZ Kalk-Zementputz	В	0,010	1,000	0,010	
Dic	ke des Bauteils [m]		0,520			
Summe der Wärmeübergangswiderstände R _{si} + R _{se}					[m²K/W]	
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$		R _{se}	1,836	[m²K/W]		
Wärmedurchgangskoeffizient $U = 1 / R_T$				0,54	[W/m²K]	

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeind nach Sanierung komplett 05.06. Auftraggeber Marktgemeinde Kematen an der	Blatt-Nr.: 29 Bearbeitungsnr.:	
Bauteilbezeichnung: Decke Turnhalle / Hackschnitzellager/Kesselraum	Kurzbezeichnung: KD02	
Bauteiltyp: bestehend Decke zu unkonditioniertem ungedämmten Keller		<u> </u>

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946 U - Wert **0,54** [W/m²K]

Α M 1:20

						•		
Konstruktionsaufbau und Berechnung								
	Baustoffschichten					d	λ	Anteil
	von innen nach außen					Dicke	Leitfähigkeit	
Nr	Bezeichnung					[m]	[W/mK]	[%]
1	Parkett				В	0,015	0,210	
2	Blindboden				В	0,024	0,170	
3	Polypropylen				В	0,001	0,220	
4	Blindboden				В	0,024	0,170	
5	Doppelschwingträger dazw.				В	0,024	0,170	20,0
	Luft steh., W-Fluss n. unten	21 < d	< = 25 mm		В		0,128	80,0
6	Gummigranulatmatte dazw.				В	0,005	0,170	40,0
	Luft steh., W-Fluss n. unten	d < = 0	3 mm		В		0,042	60,0
7	Auffütterungsklotz dazw.				В	0,050	0,170	20,0
	Mineralwolle				В		0,045	80,0
8	Stahlbeton				В	0,300	2,500	
Dic	ke des Bauteils [m]					0,443		
Zu	sammengesetzter Bauteil				(I	Berechnun	g nach ÖNORM	EN ISO 6946)
D	oppelschwingträg Achsabstand [m]:	0,400	Breite [m]:	0,080			R _{si} + R	s _e = 0,340
G	ummigranulatmat Achsabstand [m]:	0,200	Breite [m]:	0,080				
A	uffütterungsklotz: Achsabstand [m]:	0,400	Breite [m]:	0,080				
Ob	erer Grenzwert: R _{To} = 1,9566	Untere	r Grenzwert	: R _{Tu} =	1,7622	2	R _T = 1,859	94 [m²K/W]
Wä	rmedurchgangskoeffizient		U = 1	/R _T			0,54	[W/m²K]

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschu nach Sanierun Auftraggeber Marktgemeind	Blatt-Nr.: 30 Bearbeitungsnr.:		
Bauteilbezeichnung: Kellerdecke Neubau		Kurzbezeichnung: KD03	
Bauteiltyp: neu Decke zu unkonditioniertem ui			
Wärmedurchgangskoeffizient			
	U - Wert	0,22 [W/m ² K]	· · · · · · · · · · · · · · · · · · ·

Konstruktionsaufbau und Berechnung						
	Baustoffschichten	d	λ	$R = d / \lambda$		
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]		
1	Bodenbelag #	0,005	1,000	0,005		
2	Baumit Estriche F	0,070	1,400	0,050		
3	EPS-T 1000 (17 kg/m³)	0,030	0,038	0,789		
4	EPS-W 20 (19.5 kg/m³)	0,080	0,038	2,105		
5	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m ³	0,065	0,060	1,083		
6	Stahlbeton	0,250	2,500	0,100		
Dic	ke des Bauteils [m]	0,500				
Sui	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,340 [m²K/W]					
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$			4,472	[m²K/W]		
Wä	rmedurchgangskoeffizient $U = 1 / R_T$	0,22	[W/m ² K]			

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

M 1:20

F... diese Schicht enthält eine Flächenheizung

Projekt: Auftraggeber	nach Sanierun	ule Marktgemeind g komplett 05.06 e Kematen an de	.2016	Blatt-Nr.: Bearbeitungsnr.:	31
Bauteilbezeid	•		Kurzbezeichnung: ZD01	I	
Bauteiltyp: ne warme Zwise					
Wärmedurch	ngangskoeffizient	berechnet nach ÖNC	ORM EN ISO 6946		
		U - Wert	0,30 [W/m²K]		
				A	M 1 : 20

Koı	nstruktionsaufbau und Berechnung			
	Baustoffschichten	d	λ	$R = d / \lambda$
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]
1	Bodenbelag #	0,015	1,000	0,015
2	Baumit Estriche F	0,070	1,400	0,050
3	EPS-T 1000 (17 kg/m³)	0,030	0,038	0,789
4	EPS-W 20 (19.5 kg/m³)	0,040	0,038	1,053
5	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m³	0,065	0,060	1,083
6	Stahlbeton	0,200	2,500	0,080
Dic	ke des Bauteils [m]	0,420		
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,260 [m²K/W]				
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			3,330	[m²K/W]
Wä	rmedurchgangskoeffizient $U = 1/R_T$		0,30	[W/m ² K]

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

F... diese Schicht enthält eine Flächenheizung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs			Blatt-Nr Bearbei	.: tungsnr.:	32			
	nteilbezeichnung: Bestand		Kurzbezeichnung: ZD02		I			
Bauteiltyp: bestehend warme Zwischendecke								
Wä	rmedurchgangskoeffizient	berechnet nach ÖNG	ORM EN ISO 6946					
		U - Wert	0,57 [W/m²K]					
					Α	M 1 : 20		
Kor	Konstruktionsaufbau und Berechnung							
	Baustoffschichten			d	λ	$R = d / \lambda$		
	von innen nach außen			Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung			[m]	[W/mK]	[m²K/W]		
1	Rodenhelag		R	0.010	1 300	0.008		

	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Bodenbelag	В	0,010	1,300	0,008
2	1.202.06 Estrichbeton	В	0,060	1,480	0,041
3	Dämmung	В	0,040	0,040	1,000
4	Sandausgleich	В	0,050	0,700	0,071
5	Massivdecke 30/5	В	0,350	0,956	0,366
6	PZ Kalk-Zementputz	В	0,010	1,000	0,010
Dic	ke des Bauteils [m]		0,520		
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,260 [m²K/W]					[m²K/W]
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$		R _{se}	1,756	[m²K/W]	
Wä	irmedurchgangskoeffizient	U = 1 / R _T		0,57	[W/m²K]

Projekt: ALT Volksschule Marktgemeind nach Sanierung komplett 05.06. Auftraggeber Marktgemeinde Kematen an der	2016	Blatt-Nr.: 33 Bearbeitungsnr.:
Bauteilbezeichnung: 11 Zwischendecke Aufstockung	Kurzbezeichnung: ZD03	I
Bauteiltyp: renoviert warme Zwischendecke		
Wärmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946	
U - Wert	0,19 [W/m²K]	

				IVI 1 . 4U		
Konstruktionsaufbau und Berechnung						
	Baustoffschichten	d	λ	Anteil		
	von innen nach außen	Dicke	Leitfähigkeit			
Nr	Bezeichnung	[m]	[W/mK]	[%]		
1	Linoleum (1200 kg/m³) #	0,005	0,170			
2	Spezial Linolklebstoff #	0,005	0,900			
3	Harreither Klimaboden F	0,018	0,500			
4	Spezial Klebstoff #	0,005	0,900			
	SterlingOSB/3-Zero	0,025	0,130			
6	Riegel dazw.	0,200	0,120	16,0		
	"Dämmung"		0,040	84,0		
	Holzschalung	0,024	0,120			
	Luft steh., W-Fluss horizontal d > 200 mm	0,680	·			
	Gummigranulatmatte #	0,025				
	EPDM-Folie #	0,005				
	Trägerdecke Bims 20+4 B	0,240	0,956			
	PZ Kalk-Zementputz B	0,010	1,000			
Dic	ke des Bauteils [m]	1,242				
Zusammengesetzter Bauteil (Berechnung nach ÖNORM EN ISO 6946)						
R	iegel: Achsabstand [m]: 0,500 Breite [m]: 0,080		R _{si} + R	s _e = 0,260		
Ob	erer Grenzwert: R _{To} = 5,3261 Unterer Grenzwert: R _{Tu} = 5,079	55	R _T = 5,200	08 [m²K/W]		
Wä	rmedurchgangskoeffizient $U = 1/R_T$		0,19	[W/m²K]		

- #... diese Schicht zählt nicht zur OI3-Berechnung
- F... diese Schicht enthält eine Flächenheizung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs			Blatt-Nr.: 3 Bearbeitungsnr.:	34
Bauteilbezeichnung: Zwischendecke Turnhalle / Me	hrzweckhalle	Kurzbezeichnung: ZD04		
Bauteiltyp: renoviert warme Zwischendecke				
Wärmedurchgangskoeffizient	berechnet nach ÖNC	ORM EN ISO 6946		
	U - Wert	0,50 [W/m²K]		
			A M1:2	20

							IVI I . 2U
Konstruktionsaufbau und Berechnung							
Baustoffschichten					d	λ	Anteil
von innen nach außen					Dicke	Leitfähigkeit	
Nr Bezeichnung					[m]	[W/mK]	[%]
1 Parkett					0,015	0,210	
2 Blindboden					0,024	0,170	
3 Polypropylen					0,001	0,220	
4 Blindboden					0,024	0,170	
5 Doppelschwingträger dazw.					0,024	0,170	20,0
Luft steh., W-Fluss n. unten 21	1 < d <	< = 25 mm				0,128	80,0
6 Gummigranulatmatte dazw.					0,005	0,170	40,0
Luft steh., W-Fluss n. unten	d < = 6	mm				0,042	60,0
7 Auffütterungsklotz dazw.					0,050	0,170	20,0
Mineralwolle						0,045	80,0
8 Stahlbeton				В	0,300	2,500	
9 C-Profil dazw.					0,142	48,00	
Luft steh., W-Fluss horizontal 1	40 < c	d <= 145 mn	n			0,806	
10 Gipskartonplatte (900 kg/m³)					0,015	0,250	
Dicke des Bauteils [m]					0,600		
Zusammengesetzter Bauteil				(Rerechnun	g nach ÖNORM	EN ISO 6946)
•	400	Dunite (m.)	0.000	(Scroomian	<u>-</u>	,
	,400	Breite [m]:	0,080			K _{si} + R	se = 0,260
	,200	Breite [m]:	0,080				
	,400	Breite [m]:	0,080				
C-Profil: Achsabstand [m]: 0,300 Breite [m]: 0,000							
	Jnterer	Grenzwert		1,915)	<u> </u>	72 [m²K/W]
Wärmedurchgangskoeffizient		U = 1	/R _T			0,50	[W/m²K]

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016 Auftraggeber Marktgemeinde Kematen an der Ybbs			Blatt-Nr.: 35 Bearbeitungsnr.:
Bauteilbezeichnung: Zwischendecke Neubau		Kurzbezeichnung: ZD05	I
Bauteiltyp: neu warme Zwischendecke			
Wärmedurchgangskoeffizient	berechnet nach ÖNC	ORM EN ISO 6946	
	U - Wert	0,23 [W/m²K]	· · · · · · · · · · · · · · · · · · ·
			A M 1 : 20

Konstruktionsaufbau und Berechnung						
	Baustoffschichten	d	λ	$R = d / \lambda$		
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]		
1	Bodenbelag #	0,005	1,000	0,005		
2	Baumit Estriche F	0,070	1,400	0,050		
3	EPS-T 1000 (17 kg/m³)	0,030	0,038	0,789		
4	EPS-W 20 (19.5 kg/m³)	0,080	0,038	2,105		
5	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m ³	0,065	0,060	1,083		
6	Stahlbeton	0,200	2,500	0,080		
Dic	ke des Bauteils [m]	0,450				
Sui	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,260 [m²K/W]					
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$			4,372	[m²K/W]		
Wä	rmedurchgangskoeffizient $U = 1/R_T$		0,23	[W/m ² K]		

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

F... diese Schicht enthält eine Flächenheizung

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Projekt: ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

Auftraggeber Marktgemeinde Kematen an der Ybbs

Bauteilbezeichnung: Kurzbezeichnung: ZD07

Bauteiltyp: neu warme Zwischendecke

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

0,29 [W/m²K]

Α

M 1:30

U - Wert

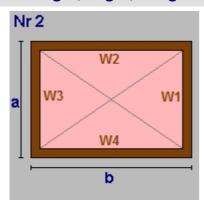
Konstruktionsaufbau und Berechnung						
	Baustoffschichten	d	λ	$R = d / \lambda$		
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]		
1	Linoleum (1200 kg/m³) #	0,005	0,170	0,029		
2	Baumit Estriche F	0,070	1,400	0,050		
3	EPS-T 1000 (17 kg/m³)	0,030	0,038	0,789		
4	EPS-W 20 (19.5 kg/m³)	0,040	0,038	1,053		
5	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m³	0,055	0,060	0,917		
6	Stahlbeton	0,250	2,500	0,100		
7	Luft steh., W-Fluss horizontal d > 200 mm	0,385	2,090	0,184		
8	Gipskartonplatte (900 kg/m³)	0,015	0,250	0,060		
Dic	ke des Bauteils [m]	0,850				
Summe der Wärmeübergangswiderstände $R_{si} + R_{se}$ 0,260 [m²K/W]						
Wä	rmedurchgangswiderstand $R_T = R_{si} + \sum R_t + \sum R_t$	R _{se}	3,442	[m ² K/W]		
Wä	rmedurchgangskoeffizient $U = 1/R_T$		0,29	[W/m ² K]		

^{#...} diese Schicht zählt nicht zur OI3-Berechnung

F... diese Schicht enthält eine Flächenheizung

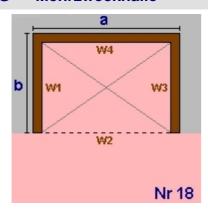
1	ule Marktgemeind g komplett 05.06. e Kematen an der	2016	Blatt-Nr.: Bearbeitungsnr.:	37
Bauteilbezeichnung: 14 ZD Lift		Kurzbezeichnung: ZD08	I	
Bauteiltyp: neu warme Zwischendecke				
Wärmedurchgangskoeffizient	berechnet nach ÖNC	ORM EN ISO 6946		
	U - Wert	0,33 [W/m²K]		
			Α	M 1 : 20

Koı	nstruktionsaufbau und Berechnung			
	Baustoffschichten	d	λ	$R = d / \lambda$
	von innen nach außen	Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung	[m]	[W/mK]	[m²K/W]
1	Bodenbelag #	0,015	1,000	0,015
2	Baumit Estriche F	0,070	1,400	0,050
3	EPS-T 1000 (17 kg/m³)	0,030	0,038	0,789
4	EPS-W 20 (19.5 kg/m³)	0,040	0,038	1,053
5	Gebundenes EPS-RECYCL. Granulat BEPS-WD 135 kg/m ³	0,045	0,060	0,750
6	Stahlbeton	0,200	2,500	0,080
Dic	ke des Bauteils [m]	0,400		
Su	mme der Wärmeübergangswiderstände R _{si} + R _{se}		0,260	[m²K/W]
Wä	rmedurchgangswiderstand $R_T = R_{si} + \sum R_t + \sum R_t$	R _{se}	2,997	[m²K/W]
Wä	rmedurchgangskoeffizient $U = 1 / R_T$		0,33	[W/m ² K]


^{#...} diese Schicht zählt nicht zur OI3-Berechnung

F... diese Schicht enthält eine Flächenheizung

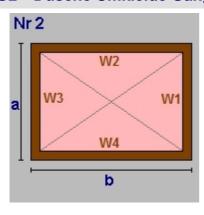
	nach Sanierun	ule Marktgemein g komplett 05.06	.2016	aten	Blatt-Nr.		38
Aut	traggeber Marktgemeind	e Kematen an de	rybbs		Bearbei	tungsnr.:	
	uteilbezeichnung: mmywand		Kurzbe:	zeichnung:			
	uteiltyp: bestehend ischenwand zu konditionier	tem Raum			ı		A
Wä	rmedurchgangskoeffizient	berechnet nach ÖN	ORM EN	ISO 6946			
		U - Wert	1,52	[W/m²K]			
						•	M 1 : 10
Koı	nstruktionsaufbau und Bere	chnung					
	Baustoffschichten				d	λ	$R = d / \lambda$
	von innen nach außen				Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung				[m]	[W/mK]	[m²K/W]
1	Luft (1 kg/m³)			В	0,010	0,025	0,400
Dic	ke des Bauteils [m]				0,010		•
Su	mme der Wärmeübergangswi	derstände R _s	_i + R _{se}			0,260	[m²K/W]
Wä	irmedurchgangswiderstand			$\Sigma R_t + R$	Se	0,660	[m²K/W]
Wä	irmedurchgangskoeffizient		= 1 / R _T	•	-	1,52	[W/m²K]


ALT Volksschule Marktgemeinde Kematen nach Sanierung

KG Lager, Lager, Stiegenhaus Mehrzweckhalle


```
b = 13,20
lichte Raumhöhe = 2,50 + \text{obere Decke}: 0,42 => 2,92m
BGF
            82,90m<sup>2</sup> BRI
                                242,06m<sup>3</sup>
Wand W1
            18,34m<sup>2</sup> EW01 erd Wand Stahlbeton Bestand
            38,54m<sup>2</sup> EW01
Wand W2
Wand W3
            18,34m<sup>2</sup> EW02 erd Wand Höhensprung Bestand
            12,54m<sup>2</sup> IW02 IW Keller
Wand W4
           Teilung 13,00 x 2,00 (Länge x Höhe)
             26,00m<sup>2</sup> EW02 erd Wand Höhensprung Bestand
Decke
            82,90m<sup>2</sup> ZD01 13 ZD UG1/UG2
            82,90m<sup>2</sup> EB01 7 Boden Mehrzweckhalle
Boden
```

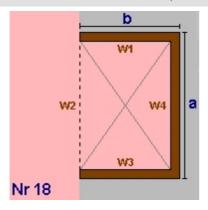
KG Mehrzweckhalle



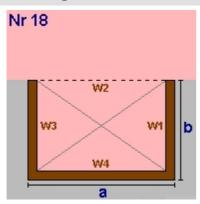
		52 + obere Decke: 0,60 => 6,12m
Wand W1	33,92m ² IW02 Teilung 10,60	IW Keller x 2,92 (Länge x Höhe)
Wand W2	•	erd Wand Höhensprung Bestand erd Wand Stahlbeton Bestand
	18,02m² AW04	1 Ziegelwand Neu 25/20
Wand W4	30,95m ² EW01 Teilung 10,60 15,90m ² EW03 42,24m ² AW06	x 2,92 (Länge x Höhe) erd Wand Stahlbeton Bestand x 1,50 (Länge x Höhe) erd Wand Mantelbeton Bestand AW Keller Mantelbeton
	-	x 2,92 (Länge x Höhe) erd Wand Stahlbeton Bestand
Decke	139,92m² ZD04	Zwischendecke Turnhalle / Mehrzweckha
Boden	139,92m ² EB01	7 Boden Mehrzweckhalle

KG Summe

KG Bruttogrundfläche [m²]: 222.82 KG Bruttorauminhalt [m³]: 1.098.37


KG2 Dusche Umkleide Gang Mehrzweckhalle

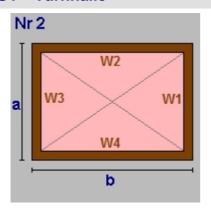

```
6,28
                 b = 13,20
lichte Raumhöhe = 2,60 + obere Decke: 0,60 => 3,20m
            82,90m<sup>2</sup> BRI
                              265,27m<sup>3</sup>
            10,68m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
           Teilung 6,28 x 1,50 (Länge x Höhe)
             9,42m<sup>2</sup> EW03 erd Wand Mantelbeton Bestand
            22,74m<sup>2</sup> AW06 AW Keller Mantelbeton
Wand W2
           Teilung 13,00 x 1,50 (Länge x Höhe)
            19,50m<sup>2</sup> EW03 erd Wand Mantelbeton Bestand
            20,10m<sup>2</sup> IW02 IW Keller
Wand W3
Wand W4
            42,24m<sup>2</sup> IW02
            82,90m² ZD04 Zwischendecke Turnhalle / Mehrzweckha
           -82,90m<sup>2</sup> ZD01 13 ZD UG1/UG2
Boden
```


ALT Volksschule Marktgemeinde Kematen nach Sanierung

KG2 Keller Werkräume, Schulküche, Gang


```
a = 16,20
                 b = 20,50
lichte Raumhöhe = 2,76 + obere Decke: 0,52 => 3,28m
           332,10m<sup>2</sup> BRI 1.089,29m<sup>3</sup>
Wand W1
            40,26m<sup>2</sup> AW06 AW Keller Mantelbeton
           Teilung 4,20 \times 3,28 (Länge x Höhe) 13,78\text{m}^2 AW04 1 Ziegelwand Neu 25/20
           Teilung 8,80 x 1,50 (Länge x Höhe)
            13,20m² EW03 erd Wand Mantelbeton Bestand
Wand W2
           -53,14m<sup>2</sup> IW02 IW Keller
            52,48m<sup>2</sup> IW02
Wand W3
           Teilung 4,50 x 3,28 (Länge x Höhe)
            14,76m² EW02 erd Wand Höhensprung Bestand
Wand W4
            19,66m<sup>2</sup> AW06 AW Keller Mantelbeton
           Teilung 11,60 x 1,50 (Länge x Höhe)
            17,40m<sup>2</sup> EW03 erd Wand Mantelbeton Bestand
           Teilung 4,90 x 3,28 (Länge x Höhe)
            16,07m<sup>2</sup> IW04 IW Keller Neubau
           332,10m<sup>2</sup> ZD02 ZD Bestand
Decke
Boden
           243,63m<sup>2</sup> EB02 8 Boden Tagesbetreuung
           88,47m<sup>2</sup> EB03 24,61+63,86=211,88
Teilung
```

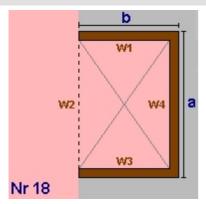
KG2 Stiegenhaus



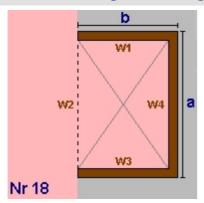

```
a = 3,35
                 b = 5,20
lichte Raumhöhe = 2,76 + obere Decke: 0,52 => 3,28m
BGF
            17,42m² BRI
                                57.14m<sup>3</sup>
Wand W1
            17,06m<sup>2</sup> IW02 IW Keller
          -10,99m<sup>2</sup> IW02
Wand W2
           17,06m² IW02
Wand W3
            10,99m<sup>2</sup> IW02
Wand W4
Decke
            17,42m<sup>2</sup> ZD02 ZD Bestand
            17,42m<sup>2</sup> EB02 8 Boden Tagesbetreuung
Boden
```

KG2 Summe

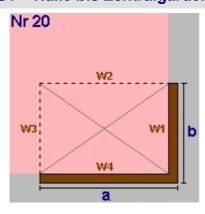
KG2 Bruttogrundfläche [m²]: 432,42 KG2 Bruttorauminhalt [m³]: 1.411,69


Turnhalle EG1


```
a = 25,15
                 b = 13,20
lichte Raumhöhe = 5,81 + obere Decke: 0,42 => 6,23m
           331,98m<sup>2</sup> BRI 2.069,76m<sup>3</sup>
Wand W1
            78,47m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
           Teilung Eingabe Fläche
            78,33m<sup>2</sup> ZW01 Dummywand
Wand W2
            82,30m<sup>2</sup> AW02
           156,80m² AW02
Wand W3
Wand W4
            82,30m<sup>2</sup> AW02
           331,98m<sup>2</sup> AD02 15/16 Decke Turnsaal
           109,16m<sup>2</sup> KD02 Decke Turnhalle / Hackschnitzellager/
Boden
Teilung -222,82m<sup>2</sup> ZD04 13,2*16,88
```

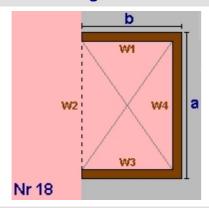

ALT Volksschule Marktgemeinde Kematen nach Sanierung

EG₁ Geräteraum, Garderobe, Turnlehrer, Dusche, Gardero

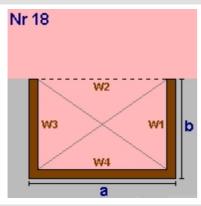

```
a = 25,15
                 b = 4,50
lichte Raumhöhe = 2,60 + obere Decke: 0,52 => 3,12m
           113,18m<sup>2</sup> BRI
                                353,11m<sup>3</sup>
Wand W1
            14,04m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
           -78,47m² AW02
Wand W2
Wand W3
            14,04m<sup>2</sup> AW02
            78,47m<sup>2</sup> AW02
Wand W4
           113,18m<sup>2</sup> ZD02 ZD Bestand
Decke
Boden
            40,28m<sup>2</sup> KD01 Kellerdecke Bestand
Teilung -72,90m<sup>2</sup> ZD02 16,204,50
```

EG1 Nachmittagsbetreuung 1/2

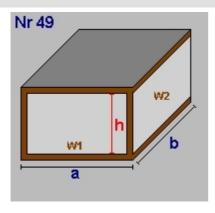

```
a = 8,00
                 b = 15,80
lichte Raumhöhe = 3,00 + obere Decke: 0,67 => 3,67m
           126,40m² BRI
BGF
                               463,26m<sup>3</sup>
            57,91m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
Wand W1
Wand W2
           -29,32m<sup>2</sup> AW02
            57,91m<sup>2</sup> AW02
Wand W3
Wand W4
            29,32m<sup>2</sup> AW02
Decke
           126,40m<sup>2</sup> FD01 21 Flachdach Bestand
          -126,40m<sup>2</sup> ZD02 ZD Bestand
Boden
```


EG1 Halle bis Zentralgarderobe


```
a = 15,80
                b = 17,15
lichte Raumhöhe = 2,60 + obere Decke: 0,67 => 3,27m
          270,97m² BRI
                              884,72m³
BGF
Wand W1
           55,99m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
          -51,59m<sup>2</sup> AW02
Wand W2
Wand W3
          -55,99m<sup>2</sup> AW02
           51,59m<sup>2</sup> AW02
Wand W4
Decke
            79,50m² FD01 21 Flachdach Bestand
            40,42m<sup>2</sup> ZD02
Teilung
Teilung 151,05m<sup>2</sup> ZD03 11,509,40
                                         108,10+42,95
            90,15m<sup>2</sup> KD01 Kellerdecke Bestand
Boden
Teilung -150,22m<sup>2</sup> ZD02 15,808,41 132,88+17,34 150,22
Teilung 30,60m<sup>2</sup> EB04 6,80 4,50
                                         30,60
```

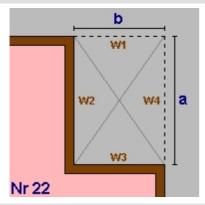

ALT Volksschule Marktgemeinde Kematen nach Sanierung

EG1 Zentralgarderobe

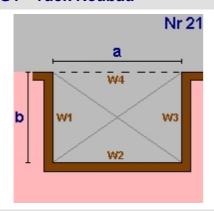

```
a = 9,40
                b = 6,70
lichte Raumhöhe = 2,60 + obere Decke: 1,24 => 3,84m
            62,98m² BRI
                              241,97m<sup>3</sup>
Wand W1
            25,74m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
Wand W2
          -36,11m² AW02
Wand W3
            25,74m<sup>2</sup> AW02
            36,11m<sup>2</sup> AW02
Wand W4
            62,98m<sup>2</sup> ZD03 11 Zwischendecke Aufstockung
Decke
Boden
            47,23m<sup>2</sup> EB04 erd Boden EG Bestand
           15,75m<sup>2</sup> KD01 2,35 6,70 15,75
Teilung
```

EG1 Technik

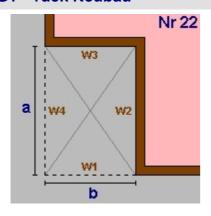

```
a = 3,11 b = 2,00
lichte Raumhöhe = 2,60 + obere Decke: 0,65 => 3,25m
             6,22m² BRI
                                20,22m³
Wand W1
             6,50m<sup>2</sup> AW01 Ziegelwand Bestand 20/20
Wand W2
           -10,11m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
            6,50m<sup>2</sup> AW01 Ziegelwand Bestand 20/20
Wand W3
Wand W4
            10,11m<sup>2</sup> AW01
Decke
             6,22m² AD03 Decke zu Dachraum
             6,22m<sup>2</sup> EB04 erd Boden EG Bestand
Boden
```


EG1 Neubau


```
Von EG1 bis OG
a = 31,52
                b = 27,80
lichte Raumhöhe(h)= 3,00 + obere Decke: 0,85 => 3,85m
          876,26m<sup>2</sup> BRI 3.373,59m<sup>3</sup>
          876,26m²
Decke
Wand W1 121,35m^2 AW04 1 Ziegelwand Neu 25/20
Wand W2
          107,03m<sup>2</sup> AW04
Wand W3
          121,35m<sup>2</sup> AW04
Wand W4 107,03m<sup>2</sup> AW04
Decke
          876,26m² ZD07 12/13 Zwischendecke Neubau
          706,12m<sup>2</sup> EB05 6 Boden Neubau
Boden
Teilung 170,14m<sup>2</sup> KD03 9,90 16,15 159,89 2,50 4,10 10,25
        170
```

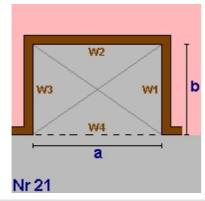

ALT Volksschule Marktgemeinde Kematen nach Sanierung

EG1 rück Neubau

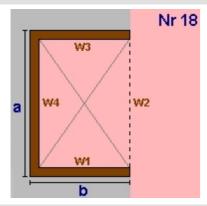

```
Von EG1 bis OG
a = 20,20 b = 1,35 lichte Raumhöhe = 3,00 + obere Decke: 0,85 => 3,85m
           -27,27m<sup>2</sup> BRI -104,99m<sup>3</sup>
            -5,20m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
Wand W1
            77,77m² AW04
Wand W2
            5,20m<sup>2</sup> AW04
Wand W3
Wand W4 -77\,,77\text{m}^{\,2} AW04
Decke
           -27,27m² ZD07 12/13 Zwischendecke Neubau
           -27,27m² EB05 6 Boden Neubau
Boden
```

EG1 rück Neubau

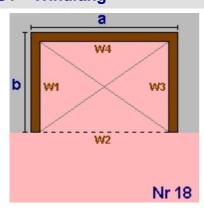

```
Von EG1 bis OG
a = 7,50 b = 11,65
lichte Raumhöhe = 3,00 + obere Decke: 0,85 => 3,85m
          -87,38m<sup>2</sup> BRI -336,39m<sup>3</sup>
Wand W1
            44,85m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
           28,88m² AW04
Wand W2
Wand W3
           44,85m² AW04
Wand W4 -28,88m^2 AW04
           -87,38m<sup>2</sup> ZD07 12/13 Zwischendecke Neubau
Decke
           -87,38m<sup>2</sup> EB05 6 Boden Neubau
```


EG1 rück Neubau


```
Von EG1 bis OG
a = 2,70 b = 2,37 lichte Raumhöhe = 3,00 + obere Decke: 0,85 => 3,85m
           -6,40m<sup>2</sup> BRI
                             -24,64	mu^3
           -9,12m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
Wand W1
Wand W2
           10,40m² AW04
Wand W3
           9,12m² AW04
Wand W4
          -10,40 m<sup>2</sup> AW04
           -6,40m² ZD07 12/13 Zwischendecke Neubau
Decke
           -6,40m² EB05 6 Boden Neubau
Boden
```


ALT Volksschule Marktgemeinde Kematen nach Sanierung

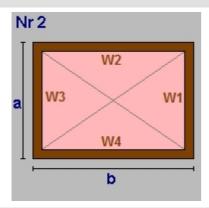
EG1 rück Neubau


```
Von EG1 bis OG
a = 9,35 b = 0,50
lichte Raumhöhe = 3,00 + obere Decke: 0,85 => 3,85m
            -4,68m² BRI
                              -18.00 \text{m}^3
            1,93m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
Wand W1
Wand W2
            36,00m<sup>2</sup> AW04
            1,93m² AW04
Wand W3
           -36,00m<sup>2</sup> AW04
Wand W4
Decke
            -4,68m<sup>2</sup> ZD07 12/13 Zwischendecke Neubau
            -4,68m² EB05 6 Boden Neubau
Boden
```

EG1 Klasse 7

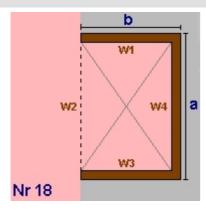

```
Von EG1 bis OG
a = 9,40 b = 1,30
lichte Raumhöhe = 3,00 + obere Decke: 0,45 => 3,45m
           12,22m² BRI
                              42,16m³
Wand W1
            4,49m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
Wand W2 -32,43m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
Wand W3
            4,49m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
Wand W4 -32,43m^2 AW04
           12,22m² ZD05 Zwischendecke Neubau
Decke
            9,40m² EB05 6 Boden Neubau
Boden
Teilung
          2,82m<sup>2</sup> KD03 2,35 1,20
```

EG1 Windfang

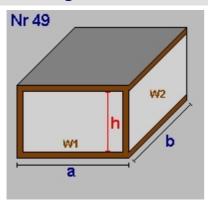

```
a = 8,00 b = 4,30
lichte Raumhöhe = 3,00 + obere Decke: 1,05 => 4,05m
           34,40m² BRI
                             139,32m³
Wand W1
         -17,42m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
          -27,14m<sup>2</sup> AW02
Wand W2
          Teilung 1,30 \times 4,05 (Länge x Höhe)
             5,27m<sup>2</sup> AW04 1 Ziegelwand Neu 25/20
Wand W3
          -17,42m² AW04 1 Ziegelwand Neu 25/20
           32,40m<sup>2</sup> AW04
Wand W4
            23,22m² FD03 17 Flachdach Beton Neubau
Decke
           11,18m<sup>2</sup> ZD08
Teilung
Boden
            34,40m² KD03 Kellerdecke Neubau
```

EG1 Summe

EG1 Bruttogrundfläche [m²]: 1.708,88 EG1 Bruttorauminhalt [m³]: 7.104,07

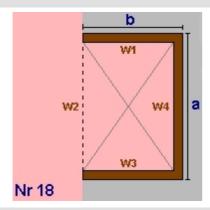

ALT Volksschule Marktgemeinde Kematen nach Sanierung

OG ---

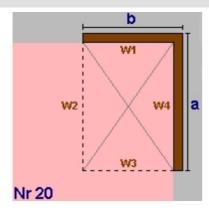

```
a = 0,01
                 b = 0,01
lichte Raumhöhe = 2,69 + obere Decke: 0,42 => 3,11m
              0,00m² BRI
                                  0,00m<sup>3</sup>
Wand W1
              0,03m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
              0,03m<sup>2</sup> AW02
Wand W2
              0,03m<sup>2</sup> AW02
Wand W3
              0,03m<sup>2</sup> AW02
Wand W4
              0,00m<sup>2</sup> AD02 15/16 Decke Turnsaal
Decke
              0,00m<sup>2</sup> ZD02 ZD Bestand
Boden
```

OG Tribüne

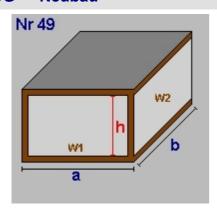

```
a = 25,15 b = 4,50
lichte Raumhöhe = 2,78 + obere Decke: 0,65 => 3,43m
          113,18m² BRI
                              388,19m<sup>3</sup>
            15,44m² AW02 Ziegelwand Bestand 38/20
Wand W1
Wand W2
             7,93m<sup>2</sup> IW01 Wand zu Dachraum
           Teilung Eingabe Fläche
            78,33m^2 ZW01 Dummywand
Wand W3
            15,44m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
            41,42m<sup>2</sup> AW02
Wand W4
           Teilung 12,85 x 3,49 (Länge x Höhe)
            44,85m² ZW01 Dummywand
Decke
          113,18m<sup>2</sup> AD01 Dachbodendecke Bestand
Boden
         -113,18m<sup>2</sup> ZD02 ZD Bestand
```


OG Stiegenhaus


```
a = 4,30 b = 9,40 lichte Raumhöhe(h)= 3,97 + obere Decke: 0,68 => 4,65m
            40,42m² BRI
                            188,11m³
Decke
            40,42m²
Wand W1
            20,01m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
            43,75m<sup>2</sup> AW02
Wand W2
Wand W3
            20,01m2 AW02
           10,94m² IW01 Wand zu Dachraum
Wand W4
           Teilung Eingabe Fläche
            32,81m² ZW01 Dummywand
           40,42m<sup>2</sup> FD04 19/22 Flachdach
Decke
          -40,42m<sup>2</sup> ZD02 ZD Bestand
Boden
```

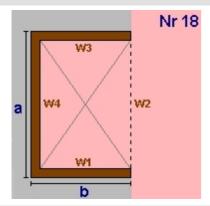

ALT Volksschule Marktgemeinde Kematen nach Sanierung

OG Klasse 7

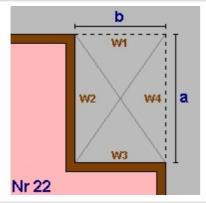

```
a = 9,40
               b = 18,20
lichte Raumhöhe = 4,22 + obere Decke: 0,43 => 4,65m
          171,08m<sup>2</sup> BRI
                             795,52m<sup>3</sup>
Wand W1
           84,63m<sup>2</sup> AW08 3.1 Brettsperrholz 10/20 hinterlüftet
          -43,71m² AW07 1 Ziegelwand hinterlüftet 25/20
Wand W2
Wand W3
          84,63m<sup>2</sup> AW08 3.1 Brettsperrholz 10/20 hinterlüftet
          -43,71m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
Wand W4
          171,08m² FD02 18 Flachdach Massivholz Neubau
Decke
Boden
         -171,08m<sup>2</sup> ZD03 11 Zwischendecke Aufstockung
```

technik OG

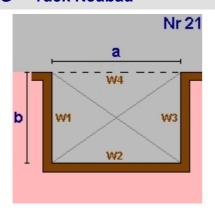

```
a = 3,45
               b = 12,45
lichte Raumhöhe = 3,97 + obere Decke: 0,68 => 4,65m
           42,95m<sup>2</sup> BRI
                            199,90m³
           57,94m^2 AW05 5 Brettsperrholz 10/20
Wand W1
Wand W2
            4,02m² IW01 Wand zu Dachraum
          Teilung 3,45 x 3,49 (Länge x Höhe)
           12,04\text{m}^2 ZW01 Dummywand
Wand W3
          -37,93m<sup>2</sup> AW08 3.1 Brettsperrholz 10/20 hinterlüftet
          Teilung 4,30 x 4,65 (Länge x Höhe)
           20,01m<sup>2</sup> AW02 Ziegelwand Bestand 38/20
           16,06m<sup>2</sup> AW05 5 Brettsperrholz 10/20
Wand W4
Decke
           42,95m<sup>2</sup> FD04 19/22 Flachdach
Boden
          -42,95m<sup>2</sup> ZD03 11 Zwischendecke Aufstockung
```


Neubau OG


```
Von EG1 bis OG
                b = 27,80
a = 31,52
lichte Raumhöhe(h) = 3,00 + obere Decke: 1,05 => 4,05m
           876,26m<sup>2</sup> BRI 3.548,84m<sup>3</sup>
BGF
           876,26m²
Decke
           127,66\text{m}^2 AW07 1 Ziegelwand hinterlüftet 25/20
Wand W1
Wand W2
           112,59m<sup>2</sup> AW07
           127,66m<sup>2</sup> AW07
Wand W3
           112,59m<sup>2</sup> AW07
Wand W4
           876,26m<sup>2</sup> FD03 17 Flachdach Beton Neubau
Decke
Boden
          -876,26m<sup>2</sup> ZD07 12/13 Zwischendecke Neubau
```

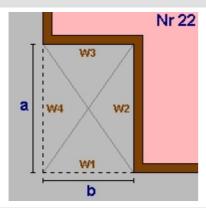

ALT Volksschule Marktgemeinde Kematen nach Sanierung

OG Klasse 7

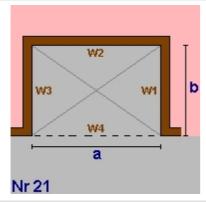

```
Von EG1 bis OG
a = 9,40 b = 1,30
lichte Raumhöhe = 3,00 + obere Decke: 1,05 => 4,05m
           12,22m² BRI
                             49,49m³
            5,27m<sup>2</sup> AW07 1 Ziegelwand hinterlüftet 25/20
Wand W1
Wand W2
         -38,07m<sup>2</sup> AW07
           5,27m² AW07
Wand W3
Wand W4 -38,07m^2 AW07
Decke
           12,22m² FD03 17 Flachdach Beton Neubau
          -12,22m² ZD05 Zwischendecke Neubau
Boden
```

rück Neubau OG

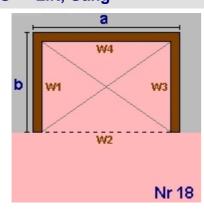

```
Von EG1 bis OG
a = 20,20 b = 1,35
lichte Raumhöhe = 3,00 + obere Decke: 1,05 => 4,05m
           -27,27m<sup>2</sup> BRI -110,44m<sup>3</sup>
Wand W1
            -5,47m<sup>2</sup> AW07 1 Ziegelwand hinterlüftet 25/20
            81,81m<sup>2</sup> AW07
Wand W2
Wand W3
             5,47m<sup>2</sup> AW07
           -81,81m² AW07
Wand W4
           -27,27m² FD03 17 Flachdach Beton Neubau
Decke
            27,27m² ZD07 12/13 Zwischendecke Neubau
```


rück Neubau OG


```
Von EG1 bis OG
a = 7,50
                b
                    = 11,65
lichte Raumhöhe = 3,00 + obere Decke: 1,05 => 4,05m
           -87,38m<sup>2</sup> BRI -353,87m<sup>3</sup>
            47,18\text{m}^2 AW07 1 Ziegelwand hinterlüftet 25/20
Wand W1
Wand W2
            30,38m<sup>2</sup> AW07
Wand W3
            47,18m<sup>2</sup> AW07
Wand W4
           -30,38m<sup>2</sup> AW07
           -87,38m<sup>2</sup> FD03 17 Flachdach Beton Neubau
Decke
Boden
            87,38m<sup>2</sup> ZD07 12/13 Zwischendecke Neubau
```


ALT Volksschule Marktgemeinde Kematen nach Sanierung

OG rück Neubau


```
Von EG1 bis OG
a = 2,70 b = 2,37 lichte Raumhöhe = 3,00 + obere Decke: 1,05 => 4,05m
            -6,40m² BRI
                              -25.92m<sup>3</sup>
            -9,60m<sup>2</sup> AW07 1 Ziegelwand hinterlüftet 25/20
Wand W1
Wand W2
            10,94m<sup>2</sup> AW07
            9,60m² AW07
Wand W3
          -10,94m<sup>2</sup> AW07
Wand W4
Decke
            -6,40m² FD03 17 Flachdach Beton Neubau
            6,40m² ZD07 12/13 Zwischendecke Neubau
Boden
```

OG rück Neubau


```
Von EG1 bis OG
a = 9,35 b = 0,50
lichte Raumhöhe = 3,00 + obere Decke: 1,05 => 4,05m
            -4,68m² BRI
                                -18,93m^{3}
Wand W1
              2,03m<sup>2</sup> AW07 1 Ziegelwand hinterlüftet 25/20
            37,87m<sup>2</sup> AW07
Wand W2
Wand W3
              2,03m<sup>2</sup> AW07
Wand W4
           -37,87m<sup>2</sup> AW07
             -4,68m<sup>2</sup> FD03 17 Flachdach Beton Neubau
Decke
             4,68m<sup>2</sup> ZD07 12/13 Zwischendecke Neubau
Boden
```

OG Lift, Gang


```
a = 2,60
                b = 4.30
lichte Raumhöhe
                   = 3,00 + obere Decke: 0,63 => 3,63m
           11,18m² BRI
                              40,58m<sup>3</sup>
BGF
Wand W1
             6,53m<sup>2</sup> AW07 1 Ziegelwand hinterlüftet 25/20
          Teilung 2,50 x 3,63 (Länge x Höhe)
             9,08m<sup>2</sup> AW03 2 Betonwand Neubau
Wand W2
           -9,44m² AW08 3.1 Brettsperrholz 10/20 hinterlüftet
Wand W3
            6,53m<sup>2</sup> AW07 1 Ziegelwand hinterlüftet 25/20
          Teilung 2,50 x 3,63 (Länge x Höhe)
             9,08m<sup>2</sup> AW03 2 Betonwand Neubau
Wand W4
            9,44m<sup>2</sup> AW03 2 Betonwand Neubau
Decke
           11,18m<sup>2</sup> FD05 20 Flachdach Lift
Boden
          -11,18m<sup>2</sup> ZD08 14 ZD Lift
```

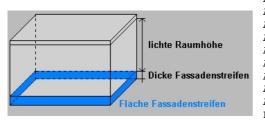
ALT Volksschule Marktgemeinde Kematen nach Sanierung

OG Freieingabe

Wand W1 -246,36m² ZW01 Dummywand

Freieingabe (Nr 53)

OG Summe


OG Bruttogrundfläche [m²]: 1.141,56

Deckenvolumen EB01				
	Fläche	222,82 m²	x Dicke 0,50 m =	111,41 m³
Deckenvolumen EB02				
	Fläche	261,05 m²	x Dicke 0,37 m =	96,59 m³
Deckenvolumen KD01				
	Fläche	146,18 m²	x Dicke 0,52 m =	76,01 m³
Deckenvolumen EB03				
	Fläche	88,47 m²	x Dicke 0,35 m =	30,96 m³
Deckenvolumen KD02				
	Fläche	109,16 m²	x Dicke 0,44 m =	48,36 m³
Deckenvolumen EB04				
	Fläche	84,05 m²	x Dicke 0,36 m =	30,26 m³
Deckenvolumen EB05				
	Fläche	589,80 m²	x Dicke 0,55 m =	324,39 m³
Deckenvolumen KD03				
	Fläche	207,36 m²	x Dicke 0,50 m =	103,68 m³

Bruttorauminhalt [m³]: 821,66

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Fassadenstreifen - Automatische Ermittlung

Wand		Boden	Dicke	Länge	Fläche
AW02	_	KD01	0,520m	9,00m	4,68m²
AW02	-	KD02	0,443m	76,70m	33,98m²
AW02	_	EB04	0,360m	10,29m	3,70m²
AW02	_	EB05	0,550m	-9,40m	-5,17m²
AW02	-	KD03	0,500m	-11,00m	-5,50m²
AW04	-	EB01	0,500m	-10,60m	-5,30m²
AW04	-	EB02	0,370m	4,20m	1,55m²
AW04	-	EB05	0,550m	136,14m	74,88m²
AW04	-	KD03	0,500m	2,40m	1,20m²
EW01	-	EB01	0,500m	30,08m	15,04m²
EW02	-	EB01	0,500m	29,88m	14,94m²
EW02	-	EB02	0,370m	4,50m	1,67m²
EW03	-	EB01	0,500m	10,60m	5,30m²
EW03	-	EB02	0,370m	20,40m	7,55m²
AW06	-	EB02	0,370m	7,20m	2,66m²
IW02	-	EB01	0,500m	0,20m	0,10m²
IW02	-	EB02	0,370m	10,20m	3,77m²
AW01	-	EB04	0,360m	7,11m	2,56m²
IW04	_	EB02	0,370m	4,90m	1,81m²

Gesamtsumme Bruttogeschoßfläche [m²]: 3.505,68 Gesamtsumme Bruttorauminhalt [m³]: 15.137,27

Fenster und Türen

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs	Z	amsc
		Decite		0 T 4 (T4)	4.00	4.40	4.00	0.00	0.00	0.040	4.00	0.70		0.50			
				ß Typ 1 (T1)	1,23	1,48	1,82	0,60	0,80	0,040	1,66	0,73		0,52			
				ß Typ 2 (T2)	1,23	1,48	1,82	0,60	1,00	0,029	1,23	0,80		0,50			
		Prumom	ппа	ß Typ 3 (T3)	1,23	1,48	1,82	0,60	2,00	0,050	1,23 4,12	1,18		0,50		—	
boriz					ı						7,12						
horiz. T1	EG1	FD01	3	1,40 x 1,40 Lichtkuppel	1,40	1,40	5,88	0,60	0,80	0,040	5,39	0,73	4,27	0,52	0,75 1	,00	0,00
T1	OG	FD03	2	1,20 x 1,20 Lichtkuppel	1,20	1,20	2,88	0,60	0,80	0,040	2,60	0,75	2,15	0,52	0,75 1		
T1	OG	FD04		1,20 x 1,20 Lichtkuppel	1,20	1,20	2,88	0,60	0,80	0,040	2,60	0,75	2,15	0,52	0,75 1	,	•
		1 004		1,20 X 1,20 Lionikupper	1,20	1,20		0,00	0,00	0,040		0,70		0,02	0,70 1		
			7				11,64				10,59		8,57				
NO B	KG	IW02	1	0,90 x 2,00 IT Lager	0,90	2,00	1,80					2,00	2,52				
Ь	EG1	AW01	1	2,20 x 2,20	2,20	2,20	4,84					1,70	8,23				
T2	EG1	AW01	1		1,71	0,80	1,37	0,60	1,00	0,029	0,76	0,88	1,21	0,50	0,75 1	00	0.00
T2	EG1	AW02		1,92 x 0,80	1,92	0,80	13,82	0,60	1,00	0,029	7,86	0,87	12,08	0,50	0,75 1	,	,
T3	EG1	AW02	1	1,89 x 2,38 EGT	1,89	2,38	4,50	0,60	2,00	0,050	3,09	1,20	5,38	0,50	0,75 1	,	,
T2	EG1	AW04	9	2,60 x 2,20	2,60	2,20	51,48	0,60	1,00	0,029	35,11	0,83	42,52	0,50	0,75 1		
T3	EG1	AW04	1	3,30 x 6,65 alu	3,30	6,65	21,95	0,60	2,00	0,050	16,34	1,12	24,60	0,50	0,75 1		
T2	OG	AW02	1	4,15 x 1,80	4,15	1,80	7,47	0,60	1,00	0,029	5,28	0,81	6,04	0,50	0,75 1		
T2	OG	AW07	9	2,60 x 2,20	2,60	2,20	51,48	0,60	1,00	0,029	35,11	0,83	42,52	0,50	0,75 1		
T2	OG	AW08	6	2,60 x 2,20	2,60	2,20	34,32	0,60	1,00	0,029	23,40	0,83	28,35	0,50	0,75 1	,00	0,00
-			39				193,03				126,95		173,45				
NW																	
T2	KG	AW06	4	1,90 x 0,95 kg	1,90	0,95	7,22	0,60	1,00	0,029	4,37	0,85	6,16	0,50	0,75 1	,00	0,00
T2	KG	AW06	1	1,10 x 0,95 kg	1,10	0,95	1,05	0,60	1,00	0,029	0,61	0,85	0,89	0,50	0,75 1	,00	0,00
В	KG	IW02	1	0,90 x 2,00 IT Lager	0,90	2,00	1,80					2,00	2,52				
	KG2	IW04	1	1,25 x 2,15 IT Gang/Lift	1,25	2,15	2,69					2,00	3,76				
T2	EG1	AW02	1	0,78 x 0,75	0,78	0,75	0,59	0,60	1,00	0,029	0,28	0,92	0,54	0,50	0,75 1	,00	0,00
T2	EG1	AW02	2	0,97 x 0,81	0,97	0,81	1,57	0,60	1,00	0,029	0,83	0,88	1,39	0,50	0,75 1	,00	0,00
T2	EG1	AW04	2	2,60 x 0,70	2,60	0,70	3,64	0,60	1,00	0,029	1,95	0,90	3,27	0,50	0,75 1	,00	0,00
Т3	EG1	AW04	1	2,60 x 6,65 alu	2,60	6,65	17,29	0,60	2,00	0,050	13,55	1,03	17,74	0,50	0,75 1	,00	0,00
T2	EG1	AW04	4	2,60 x 1,80	2,60	1,80	18,72	0,60	1,00	0,029	12,21	0,85	15,82	0,50	0,75 1	,00	0,00
T2	EG1	AW04	2	1,60 x 0,70	1,60	0,70	2,24	0,60	1,00	0,029	1,25	0,87	1,95	0,50	0,75 1	,00	0,00
T2	OG	AW02	2	3,65 x 0,73	3,65	0,73	5,33	0,60	1,00	0,029	2,99	0,89	4,72	0,50	0,75 1	,00	0,00
T2	OG	AW02	1	2,40 x 0,73	2,40	0,73	1,75	0,60	1,00	0,029	1,00	0,87	1,53	0,50	0,75 1	,00	0,00
	OG	AW05	1	2,00 x 2,20 Tür technik	2,00	2,20	4,40					1,70	7,48				
T2	OG	AW07	1	2,60 x 0,70	2,60	0,70	1,82	0,60	1,00	0,029	0,98	0,90	1,63	0,50	0,75 1	,00	0,00
T2	OG	AW07	4	2,60 x 1,80	2,60	1,80	18,72	0,60	1,00	0,029	12,21	0,85	15,82	0,50	0,75 1	,00	0,00
T2	OG	AW07	2	1,60 x 0,70	1,60	0,70	2,24	0,60	1,00	0,029	1,25	0,87	1,95	0,50	0,75 1	,00	0,00
			30				91,07				53,48		87,17				
SO			_														
T2	EG1	AW02	3		3,65	1,94	21,24	0,60	1,00	0,029	15,03	0,81	17,16		0,75 1		
T2	EG1	AW02		3,66 x 1,94	3,66	1,94	14,20	0,60	1,00	0,029	10,05	0,81	11,47	0,50	0,75 1		
T3	EG1	AW02		2,00 x 2,30 alu	2,00	2,30	4,60	0,60	2,00	0,050	3,18	1,19	5,46	0,50	0,75 1		
T2	EG1	AW02 AW04		3,62 x 1,94	3,62	1,94	7,02	0,60	1,00	0,029	4,96	0,81	5,67	0,50	0,75 1		
T2 T2	EG1 EG1	AW04 AW04		2,60 x 1,80 2,60 x 1,00	2,60	1,80 1,00	14,04 5,20	0,60 0,60	1,00 1,00	0,029 0,029	9,16 3,22	0,85 0,85	11,86 4 42	0,50 0,50	0,75 1 0,75 1		
12	LGI	AVVU4	_	2,00 x 1,00	2,00	1,00	3,20	0,00	1,00	0,029	5,22	0,00	7,42	0,50	0,75	JUU	0,00

Fenster und Türen

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs	Z	amsc
T2	EG1	AW04	2	1,20 x 2,80	1,20	2,80	6,72	0,60	1,00	0,029	4,10	0,87	5,84	0,50	0,75	1,00	0,00
T2	OG	AW07	1	2,60 x 2,00	2,60	2,00	5,20	0,60	1,00	0,029	3,48	0,84	4,34	0,50	0,75	1,00	0,00
T2	OG	AW07	2	2,60 x 1,00	2,60	1,00	5,20	0,60	1,00	0,029	3,22	0,85	4,42	0,50	0,75	1,00	0,00
T2	OG	AW07	3	2,60 x 1,80	2,60	1,80	14,04	0,60	1,00	0,029	9,16	0,85	11,86	0,50	0,75	1,00	0,00
T2	OG	AW07	2	1,20 x 2,80	1,20	2,80	6,72	0,60	1,00	0,029	4,10	0,87	5,84	0,50	0,75	1,00	0,00
			22				104,18				69,66		88,34				
SW																	
T2	KG	AW06	2	1,91 x 0,92 kg	1,91	0,92	3,51	0,60	1,00	0,029	2,11	0,86	3,01	0,50	0,75	1,00	0,00
T2	KG	AW06	4	1,90 x 2,45 kg	1,90	2,45	18,62	0,60	1,00	0,029	13,61	0,78	14,56	0,50	0,75	1,00	0,00
T2	KG	AW06	1	2,00 x 2,35 kg	2,00	2,35	4,70	0,60	1,00	0,029	3,46	0,78	3,66	0,50	0,75	1,00	0,00
T2	KG	AW06	2	2,15 x 2,45 kg	2,15	2,45	10,54	0,60	1,00	0,029	7,48	0,80	8,44	0,50	0,75	1,00	0,00
T2	KG	AW06	3	2,15 x 0,95 kg	2,15	0,95	6,13	0,60	1,00	0,029	3,81	0,84	5,16	0,50	0,75	1,00	0,00
T2	EG1	AW02	2	1,95 x 2,00	1,95	2,00	7,80	0,60	1,00	0,029	4,82	0,87	6,79	0,50	0,75	1,00	0,00
T2	EG1	AW02	2	1,90 x 0,80	1,90	0,80	3,04	0,60	1,00	0,029	1,72	0,88	2,66	0,50	0,75	1,00	0,00
T2	EG1	AW02	2	1,95 x 1,96	1,95	1,96	7,64	0,60	1,00	0,029	5,09	0,83	6,35	0,50	0,75	1,00	0,00
T2	EG1	AW02	2	1,93 x 1,95	1,93	1,95	7,53	0,60	1,00	0,029	4,99	0,83	6,26	0,50	0,75	1,00	0,00
Т3	EG1	AW04	1	5,22 x 3,20 alu	5,22	3,20	16,70	0,60	2,00	0,050	13,12	1,02	17,10	0,50	0,75	1,00	0,00
T2	EG1	AW04	5	2,60 x 1,80	2,60	1,80	23,40	0,60	1,00	0,029	15,26	0,85	19,77	0,50	0,75	1,00	0,00
Т3	EG1	AW04	1	7,10 x 6,65 alu	7,10	6,65	47,22	0,60	2,00	0,050	37,87	1,01	47,64	0,50	0,75	1,00	0,00
T2	OG	AW02	1	4,15 x 1,80	4,15	1,80	7,47	0,60	1,00	0,029	5,28	0,81	6,04	0,50	0,75	1,00	0,00
T2	OG	AW07	5	2,60 x 1,80	2,60	1,80	23,40	0,60	1,00	0,029	15,26	0,85	19,77	0,50	0,75	1,00	0,00
T2	OG	AW08	2	2,60 x 2,00	2,60	2,00	10,40	0,60	1,00	0,029	6,95	0,84	8,68	0,50	0,75	1,00	0,00
			35				198,10			•	140,83		175,89				
Summe	,		133				598,02				101,51		533,42				

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

Abminderungsfaktor 1,00 ... keine Verschattung

B... Fenster gehört zum Bestand des Gebäudes

amsc... Param. zur Bewert. der Aktivierung von Sonnenschutzeinricht. Sommer

Typ... Prüfnormmaßtyp z... Abminderungsfakt. für bewegliche Sonnenschutzeinricht.

Rahmen
ALT Volksschule Marktgemeinde Kematen nach Sanierung

Bezeichnung	Rb.re.	Rb.li.	Rb.o.	Rb.u.	%	Stulp Anz.		Pfost Anz.	Pfb.		V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,030	0,030	0,030	0,030	9					7	7	•••	Dachkuppelfensterrahmen, > 50cm PP-Schürze
Typ 2 (T2)	0,120	0,120	0,120	0,120	33								TROCAL 88+
Typ 3 (T3)	0,120	0,120	0,120	0,120	33								Schüco ASS 70.HI
1,90 x 0,95 kg	0,120	0,120	0,120	0,120	39			1	0,120				TROCAL 88+
1,91 x 0,92 kg	0,120	0,120	0,120	0,120	40			1	0,120				TROCAL 88+
1,90 x 2,45 kg	0,120	0,120	0,120	0,120	27			1	0,120				TROCAL 88+
2,00 x 2,35 kg	0,120	0,120	0,120	0,120	26			1	0,120				TROCAL 88+
2,15 x 2,45 kg	0,120	0,120	0,120	0,120	29			1	0,120	1		0,120	TROCAL 88+
1,10 x 0,95 kg	0,120	0,120	0,120	0,120	42								TROCAL 88+
2,15 x 0,95 kg	0,120	0,120	0,120	0,120	38			1	0,120				TROCAL 88+
0,78 x 0,75	0,120	0,120	0,120	0,120	53								TROCAL 88+
0,97 x 0,81	0,120	0,120	0,120	0,120	47								TROCAL 88+
1,95 x 2,00	0,120	0,120	0,120	0,120	38			2	0,120	1		0,120	TROCAL 88+
1,90 x 0,80	0,120	0,120	0,120	0,120	43			1	0,120				TROCAL 88+
3,65 x 1,94	0,120	0,120	0,120	0,120	29			2	0,120	1		0,120	TROCAL 88+
3,66 x 1,94	0,120	0,120	0,120	0,120	29			2	0,120	1		0,120	TROCAL 88+
2,00 x 2,30 alu	0,120	0,120	0,120	0,120	31			1	0,120	1		0,120	Schüco ASS 70.HI
1,71 x 0,80	0,120	0,120	0,120	0,120	45			1	0,120				TROCAL 88+
1,92 x 0,80	0,120	0,120	0,120	0,120	43			1	0,120				TROCAL 88+
1,89 x 2,38 EGT	0,120	0,120	0,120	0,120	31			1	0,120	1		0,120	Schüco ASS 70.HI
1,40 x 1,40	0,030	0,030	0,030	0,030	8								Dachkuppelfensterrahmen, > 50cm PP-Schürze
Lichtkuppel 5,22 x 3,20 alu	0,120	0,120	0,120	0,120	21	1	0,120	2	0,120	1		0,120	l
2,60 x 1,80	0,120	0,120	0,120	0,120	35			2	0,120	1		0,120	TROCAL 88+
2,60 x 1,00	0,120	0,120	0,120	0,120	38			2	0,120				TROCAL 88+
2,60 x 0,70	0,120	0,120	0,120	0,120	46			2	0,120				TROCAL 88+
7,10 x 6,65 alu	0,120	0,120	0,120	0,120	20	2	0,120	3	0,120	3		0,120	Schüco ASS 70.HI
2,60 x 6,65 alu	0,120	0,120	0,120	0,120	22			1	0,120	3		0,120	Schüco ASS 70.HI
1,60 x 0,70	0,120	0,120	0,120	0,120	44								TROCAL 88+
2,60 x 2,20	0,120	0,120	0,120	0,120	32			2	0,120	1		0,120	TROCAL 88+
3,30 x 6,65 alu	0,120	0,120	0,120	0,120	26	1	0,120	2	0,120	3		0,120	Schüco ASS 70.HI
1,95 x 1,96	0,120	0,120	0,120	0,120	33			1	0,120	1		0,120	TROCAL 88+
1,93 x 1,95	0,120	0,120	0,120	0,120	34			1	0,120	1		0,120	TROCAL 88+
3,62 x 1,94	0,120	0,120	0,120	0,120	29			2	0,120	1		0,120	TROCAL 88+
1,20 x 2,80	0,120	0,120	0,120	0,120	39			1	0,120	1		0,120	TROCAL 88+
3,65 x 0,73	0,120	0,120	0,120	0,120	44			3	0,120				TROCAL 88+

Rahmen

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Bezeichnung	Rb.re.	Rb.li. m	Rb.o. m	Rb.u. m	%	Stulp Anz.	Stb.	Pfost Anz.	Pfb. m	H-Sp. Anz.	 Spb. m	
4,15 x 1,80	0,120	0,120	0,120	0,120	29			2	0,120	1	0,120	TROCAL 88+
1,20 x 1,20 Lichtkuppel	0,030	0,030	0,030	0,030	10							Dachkuppelfensterrahmen, > 50cm PP-Schürze
2,40 x 0,73	0,120	0,120	0,120	0,120	43			1	0,120			TROCAL 88+
2,60 x 2,00	0,120	0,120	0,120	0,120	33			2	0,120	1	0,120	TROCAL 88+

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]

Stb. Stulpbreite [m] H-Sp. Anz Anzahl der horizontalen Sprossen Pfb. Pfostenbreite [m] V-Sp. Anz Anzahl der vertikalen Sprossen Typ Prüfnormmaßtyp

% Rahmenanteil des gesamten Fensters

Spb. Sprossenbreite [m]

Heizwärmebedarf Standortklima

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Heizwärmebedarf Standortklima (Kematen)

BGF 3.505,68 m² L_T 1.784,09 W/K Innentemperatur 20 °C

BRI 15.137,27 m³ L_V 900,90 W/K

Gesamt	365	198			175.752	88.749	99.356	52.295	·	111.149
Dezember	31	31	-0,10	1,000	26.686	13.571	11.541	2.488	1,000	26.227
November	30	30	3,75	1,000	20.870	10.507	11.127	3.173	1,000	17.078
Oktober	31	25	9,21	0,984	14.327	7.286	11.351	5.688	0,799	3.654
September	30	0	14,36	0,569	7.245	3.647	6.337	4.548	0,000	0
August	31	0	17,64	0,219	3.126	1.590	2.523	2.193	0,000	0
Juli	31	0	18,15	0,164	2.454	1.248	1.898	1.804	0,000	0
Juni	30	0	16,38	0,325	4.644	2.338	3.618	3.364	0,000	0
Mai	31	0	13,31	0,599	8.878	4.515	6.915	6.462	0,000	0
April	30	22	8,74	0,959	14.469	7.284	10.673	8.148	0,741	2.172
März	31	31	4,25	0,999	20.906	10.632	11.532	6.841	1,000	13.164
Februar	28	28	0,36	1,000	23.546	11.587	10.299	4.622	1,000	20.213
Jänner	31	31	-1,55	1,000	28.601	14.545	11.541	2.964	1,000	28.641
		tage	Außen- tempertur °C	zungsgrad	wärme- verluste kWh	wärme- verluste kWh	Innere Gewinne kWh	Solare Gewinne kWh	Heiztage zu Tage	bedarf *
Monat	Tage	Heiz-	Mittlere	Ausnut-	Transmissions-	Lüftungs-	nutzbare	nutzbare	Verhältnis	Wärme

 $HWB_{SK} = 31,71 \text{ kWh/m}^2\text{a}$

^{*)} Wärmebdarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Standortklima ALT Volksschule Marktgemeinde Kematen nach Sanierung

Referenz-Heizwärmebedarf Standortklima (Kematen)

BGF 3.505,68 m² L_T 1.784,09 W/K Innentemperatur 20 °C

BRI 15.137,27 m³ L_V 991,69 W/K

Gesamt	365	219			175.752	97.692	71.420	57.112	·	144.720
Dezember	31	31	-0,10	1,000	26.686	14.833	7.825	2.488	1,000	31.206
November	30	30	3,75	1,000	20.870	11.601	7.572	3.173	1,000	21.726
Oktober	31	31	9,21	0,998	14.327	7.964	7.813	5.775	1,000	8.703
September	30	4	14,36	0,719	7.245	4.027	5.444	5.742	0,122	10
August	31	0	17,64	0,272	3.126	1.738	2.131	2.733	0,000	0
Juli	31	0	18,15	0,203	2.454	1.364	1.589	2.229	0,000	0
Juni	30	0	16,38	0,403	4.644	2.582	3.054	4.172	0,000	0
Mai	31	3	13,31	0,735	8.878	4.935	5.753	7.930	0,092	12
April	30	30	8,74	0,993	14.469	8.042	7.522	8.439	1,000	6.550
März	31	31	4,25	1,000	20.906	11.621	7.824	6.847	1,000	17.856
Februar	28	28	0,36	1,000	23.546	13.088	7.067	4.622	1,000	24.945
Jänner	31	31	-1,55	1,000	28.601	15.898	7.825	2.964	1,000	33.710
		lage	tempertur		verluste kWh	verluste kWh	Gewinne kWh	Gewinne kWh	zu Tage	kWh
Monat	Tage	Heiz- tage	Mittlere Außen-	Ausnut- zungsgrad	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare Solare	Verhältnis Heiztage	Wärme bedarf *

HWB $_{Ref,SK}$ = 41,28 kWh/m²a

^{*)} Wärmebdarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Heizwärmebedarf Referenzklima

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Heizwärmebedarf Referenzklima

BGF 3.505,68 m² L_T 1.786,60 W/K Innentemperatur 20 °C

BRI 15.137,27 m³ L_V 900,82 W/K

Gesamt	365	191			166.397	83.899	94.024	49.650		104.876
Dezember	31	31	0,19	1,000	26.332	13.372	11.541	2.548	1,000	25.615
November	30	30	4,16	1,000	20.376	10.243	11.127	3.267	1,000	16.226
Oktober	31	22	9,64	0,975	13.771	6.993	11.257	5.802	0,710	2.629
September	30	0	15,03	0,498	6.393	3.214	5.540	4.065	0,000	0
August	31	0	18,56	0,132	1.914	972	1.523	1.363	0,000	0
Juli	31	0	19,12	0,077	1.170	594	883	881	0,000	0
Juni	30	0	17,33	0,233	3.435	1.727	2.597	2.564	0,000	0
Mai	31	0	14,20	0,513	7.710	3.915	5.918	5.704	0,000	0
April	30	18	9,62	0,923	13.352	6.712	10.272	8.142	0,597	985
März	31	31	4,81	0,999	20.191	10.254	11.525	7.174	1,000	11.745
Februar	28	28	0,73	1,000	23.135	11.369	10.299	4.983	1,000	19.223
Jänner	31	31	-1,53	1,000	28.618	14.533	11.541	3.155	1,000	28.455
		tage	tempertur	zungsgrad	verluste kWh	verluste kWh	Gewinne kWh	Solare Gewinne kWh	Heiztage zu Tage	bedarf *) kWh
Monat	Tage	Heiz-	Mittlere Außen-	Ausnut-	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare	Verhältnis	Wärme-

 $HWB_{RK} = 29,92 \text{ kWh/m}^2\text{a}$

^{*)} Wärmebdarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Referenzklima ALT Volksschule Marktgemeinde Kematen nach Sanierung

Referenz-Heizwärmebedarf Referenzklima

BGF 3.505,68 m² L_T 1.786,60 W/K Innentemperatur 20 °C

BRI 15.137,27 m³ L_V 991,69 W/K

Gesamt	365	208			166.397	92.362	67.282	53.861		136.812
Dezember	31	31	0,19	1,000	26.332	14.616	7.825	2.548	1,000	30.575
November	30	30	4,16	1,000	20.376	11.310	7.572	3.267	1,000	20.846
Oktober	31	30	9,64	0,997	13.771	7.644	7.805	5.934	0,975	7.481
September	30	0	15,03	0,630	6.393	3.549	4.774	5.147	0,000	0
August	31	0	18,56	0,164	1.914	1.062	1.283	1.693	0,000	0
Juli	31	0	19,12	0,094	1.170	649	736	1.083	0,000	0
Juni	30	0	17,33	0,288	3.435	1.906	2.179	3.162	0,000	0
Mai	31	0	14,20	0,631	7.710	4.279	4.940	7.023	0,000	0
April	30	26	9,62	0,984	13.352	7.411	7.453	8.681	0,879	4.068
März	31	31	4,81	1,000	20.191	11.207	7.824	7.184	1,000	16.391
Februar	28	28	0,73	1,000	23.135	12.842	7.067	4.983	1,000	23.927
Jänner	31	31	-1,53	1,000	28.618	15.885	7.825	3.155	1,000	33.523
		tage	tempertur	zungsgrad	verluste kWh	verluste kWh	Gewinne kWh	Gewinne kWh	zu Tage	kWh
Monat	Tage	Heiz-	Mittlere Außen-	Ausnut-	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare Solare	Verhältnis Heiztage	Wärme- bedarf *)

HWB_{Ref,RK}= 39,03 kWh/m²a

^{*)} Wärmebdarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Kühlbedarf Standort

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Kühlbedarf Standort (Kematen)

BGF $3.505,68 \text{ m}^2$ L T¹) 1.677,57 W/K Innentemperatur $26 \,^{\circ}\text{C}$ fcorr 1,00

BRI 15.137,27 m³

Gesamt	365		253.431	136.159	389.591	271.199	112.659	383.858		89.088
Dezember	31	-0,10	32.581	17.621	50.202	23.083	3.317	26.400	1,00	0
November	30	3,75	26.871	14.387	41.258	22.255	4.231	26.485	1,00	0
Oktober	31	9,21	20.960	11.336	32.296	23.083	7.711	30.794	0,94	0
September	30	14,36	14.059	7.527	21.586	22.255	10.648	32.903	0,65	11.364
August	31	17,64	10.428	5.640	16.068	23.083	13.376	36.459	0,44	20.391
Juli	31	18,15	9.796	5.298	15.094	23.083	14.631	37.714	0,40	22.620
Juni	30	16,38	11.614	6.218	17.832	22.255	13.795	36.050	0,49	18.220
Mai	31	13,31	15.836	8.565	24.401	23.083	14.379	37.462	0,65	13.112
April	30	8,74	20.852	11.164	32.016	22.255	11.327	33.582	0,90	3.382
März	31	4,25	27.146	14.682	41.828	23.083	9.129	32.212	0,99	0
Februar	28	0,36	28.905	15.127	44.032	20.599	6.163	26.761	1,00	0
Jänner	31	-1,55	34.382	18.595	52.977	23.083	3.951	27.034	1,00	0
		temperaturen °C	verluste kWh	verluste kWh	kWh	kWh	kWh	kWh		kWh
Monate	Tage	Mittlere Außen-	Transm wärme-	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

 $KB = 25,41 \text{ kWh/m}^2\text{a}$

L_T1) Korrekturfaktor für Flächenheizungen im Kühlfall = 1

Außen induzierter Kühlbedarf Referenzklima ALT Volksschule Marktgemeinde Kematen nach Sanierung

Außen induzierter Kühlbedarf Referenzklima

BGF $3.505,68 \text{ m}^2$ L T¹) 1.677,79 W/K Innentemperatur $26 \,^{\circ}\text{C}$ fcorr 1,00

BRI 15.137,27 m³

Gesamt	365		244.448	54.182	298.630	0	117.362	117.362		9.509
Dezember	31	0,19	32.218	7.141	39.359	0	3.398	3.398	1,00	0
November	30	4,16	26.383	5.848	32.231	0	4.357	4.357	1,00	0
Oktober	31	9,64	20.422	4.526	24.948	0	7.932	7.932	1,00	0
September	30	15,03	13.252	2.937	16.189	0	10.886	10.886	1,00	0
August	31	18,56	9.287	2.059	11.346	0	13.764	13.764	0,82	2.537
Juli	31	19,12	8.588	1.904	10.492	0	15.351	15.351	0,68	4.871
Juni	30	17,33	10.473	2.321	12.795	0	14.649	14.649	0,86	2.100
Mai	31	14,20	14.730	3.265	17.995	0	14.834	14.834	0,99	0
April	30	9,62	19.787	4.386	24.173	0	11.760	11.760	1,00	0
März	31	4,81	26.451	5.863	32.314	0	9.580	9.580	1,00	0
Februar	28	0,73	28.491	6.315	34.806	0	6.644	6.644	1,00	0
Jänner	31	-1,53	34.365	7.617	41.982	0	4.207	4.207	1,00	0
		°C	verluste kWh	verluste kWh	kWh	kWh	kWh	kWh		kWh
Monate	Tage	Mittlere Außen-	Transm wärme-	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

 $KB^* = 0,63 \text{ kWh/m}^3\text{a}$

L_T1) Korrekturfaktor für Flächenheizungen im Kühlfall = 1

RH-Eingabe

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Raumheizung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

Abgabe

Haupt Wärmeabgabe Flächenheizung zus. Wärmeabgabe Radiatoren, Einzelraumheizer

Systemtemperatur 40°/30° Systemtemperatur 60°/35°

Regelfähigkeit Raumthermostat-Zonenregelung mit Zeitsteuerung

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Verteilung			Leitungsta	usch	Leitungslängen lt. Defaultwerten		
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser		Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]	
Verteilleitungen	Ja	2/3		Ja	142,12	100	
Steigleitungen	Ja	2/3		Ja	280,45	100	
Anbindeleitunge	n Ja	1/3		Nein	1.279,88		

Speicher kein Wärmespeicher vorhanden

Bereitstellung

Bereitstellungssystem Nah-/Fernwärme

Heizkreis gleitender Betrieb

Energieträger Fernwärme aus Heizwerk

(konventionell)

Betriebsweise gleitender Betrieb

Hilfsenergie - elektrische Leistung

Umwälzpumpe 543,81 W Defaultwert

WWB-Eingabe

ALT Volksschule Marktgemeinde Kematen nach Sanierung

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Wärmeverteilu</u>	ıng ohne	<u>Zirkulation</u>	✓ Leitungsta	iusch	Leitungsläng	en It. Defaultwerter	า
	gedämmt	Verhältnis		Dämmung	Leitungslänge	konditioniert	
		Dämmstoffdicke :		Armaturen	[m]	[%]	
Verteilleitungen	Ja	2/3	51	Ja	43,46	100	
Steigleitungen	Ja	2/3		Ja	140,23	100	
Stichleitungen					168,27	Material Kunststo	off 1 W/m

Speicher

Art des Speichers indirekt beheizter Speicher
Standort nicht konditionierter Bereich

Baujahr Ab 1994

Nennvolumen 4.908 I Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher $q_{b,WS} = 6,39 \text{ kWh/d}$ Defaultwert

Hilfsenergie - elektrische Leistung

Speicherladepumpe 257,15 W Defaultwert

Lüftung für Gebäude **ALT Volksschule Marktgemeinde Kematen nach Sanierung** komplett 05.06.2016

		Lüftun	g
energetisch wirksar	mer Luftwechsel	0,265 1/h	
Falschluftrate		0,11 1/h	
Luftwechselrate Blo	wer Door Test	9,00 1/h	
Temperaturänderun	gsgrad	65 %	Plattenwärmeübertrager Kreuz-Gegenstrom 65%
Erdvorwärmung			kein Erdwärmetauscher
energetisch wirksar	nes Luftvolumen		
Gesamtes Gebä	ude Vv	7.291,81 m ³	
Luftvolumen RL	T Anlage Vv	3.220,17 m ³	
Temperaturänderun	gsgrad Gesamt	65 %	
Art der Lüftung	Lufterneuerung		
Lüftungsanlage	ohne Heiz- und	ohne Kühlfunktion	
tägl. Betriebszeit de	er Anlage	14 h	

Zuluftventilator spez. Leistung	0,83 Wh/m ³	
Abluftventilator spez. Leistung	0,83 Wh/m ³	
NERLT-h	0 kWh/a	(nur Lufterneuerung)
NERLT-k	0 kWh/a	(nur Lufterneuerung)
NERLT-d	0 kWh/a	(nur Lufterneuerung)
NE	24.254 kWh/a	

		2 1120 1 11111/10
Anmerkung		
Lehrerzimmer	59,25	
Direktion	20,01	
Kopierer	6,35	
Teeküche	13,95	
Lehrmittel	20,28	
Besprechung	12,27	
Klasse 1	60,30	
Klasse 2	60,45	
Klasse 3	60,30	
Nachmittagsbe	treuung 3	80,34
WC Lehrer DA	4,11	
WC Lehrer Hr	2,63	
WC Mädchen	14,68	
WC Knaben	12,50	
427,42		
Werkraum tech	nisch 60,18	
Autos Ollou Eusausiala	o matrice of Combile 070	C C4002F0 halmant@arteniallan.arm

Lüftung für Gebäude

ALT Volksschule Marktgemeinde Kematen nach Sanierung komplett 05.06.2016

```
Gruppenraum
              25,80
Lager 12,18
Lehrmittel
              20.25
Putzmittel
              9.40
ASO-Klasse
              80,34
WC Lehrer DA 4,11
WC Lehrer Hr 2,63
WC Mädchen 14,68
WC Knaben
              12,50
Klasse 4
              60,30
Klasse 5
              60,45
Klasse 6
              60,30
Klasse 7
              61,92
Klasse 8
              61,32
       546,36
Mehrzweckhalle136,64
Dusche 6,00
Dusche 6,06
Umkleide Herren
                     13,38
Umkleide Damen
                      13,38
              7,85
WC Herren
WC Damen
              10,10
Garderobe
              15,24
Sanitär TBE
              13,23
Tagesbetreuungseinrichtung
                             45,21
Ruhebereich
              15,32
Werkraum Textil/Schulküche/Essbereich63,86
       346,27
Nachmittagsbetreuung 1
                             71,21
Nachmittagsbetreuung 2
                             53,04
WC Knaben
              11,24
WC Lehrer
              2,23
WC Mädchen 8,52
Garderobe 2
              28,26
WC 2, 1,75
Dusche 2,
              6,30
Dusche 1,
              6,30
WC 1, 1,75
Garderobe 1.
              25,53
Turnlehrer
              11,98
       228,11
       1.548,16
```

```
Legende
```

NERLT-h ... spezifischer jährlicher Nutzenergiebedarf für das Heizen des Luftvolumenstroms NERLT-k ... spezifischer jährlicher Nutzenergiebedarf für das Kühlen des Luftvolumenstroms ... spezifischer jährlicher Nutzenergiebedarf für das Dampfbefeuchten des Luftvolumenstroms NERLT-d

... jährlicher Nutzenergiebedarf für Luftförderung NE